23 instantiations of EstimatorChain
Microsoft.ML.AutoML (3)
Experiment\SuggestedPipeline.cs (1)
116IEstimator<ITransformer> pipeline = new EstimatorChain<ITransformer>();
SweepableEstimator\SweepableEstimatorPipeline.cs (1)
78var pipeline = new EstimatorChain<ITransformer>();
SweepableEstimator\SweepablePipeline.cs (1)
87var pipeline = new EstimatorChain<ITransformer>();
Microsoft.ML.AutoML.Samples (1)
Sweepable\SweepableLightGBMBinaryExperiment.cs (1)
55var pipeline = new EstimatorChain<ITransformer>().Append(lgbm);
Microsoft.ML.Data (5)
DataLoadSave\CompositeLoaderEstimator.cs (1)
24_estimatorChain = estimatorChain ?? new EstimatorChain<TLastTransformer>();
DataLoadSave\EstimatorChain.cs (2)
95return new EstimatorChain<TNewTrans>(_host, _estimators.AppendElement(estimator), _scopes.AppendElement(scope), _needCacheAfter.AppendElement(false)); 123return new EstimatorChain<TLastTransformer>(env, _estimators, _scopes, newNeedCache);
DataLoadSave\EstimatorExtensions.cs (2)
57return new EstimatorChain<ITransformer>().Append(start).Append(estimator, scope); 71return new EstimatorChain<ITransformer>().Append(start).AppendCacheCheckpoint(env);
Microsoft.ML.DnnImageFeaturizer.AlexNet (1)
AlexNetExtension.cs (1)
39var modelChain = new EstimatorChain<ColumnCopyingTransformer>();
Microsoft.ML.DnnImageFeaturizer.ResNet101 (1)
ResNet101Extension.cs (1)
39var modelChain = new EstimatorChain<ColumnCopyingTransformer>();
Microsoft.ML.DnnImageFeaturizer.ResNet18 (1)
ResNet18Extension.cs (1)
39var modelChain = new EstimatorChain<ColumnCopyingTransformer>();
Microsoft.ML.DnnImageFeaturizer.ResNet50 (1)
ResNet50Extension.cs (1)
39var modelChain = new EstimatorChain<ColumnCopyingTransformer>();
Microsoft.ML.Tests (2)
CachingTests.cs (1)
74new EstimatorChain<ITransformer>().AppendCacheCheckpoint(ML)
OnnxConversionTest.cs (1)
2202var chain = new EstimatorChain<ITransformer>().Append(pipeline);
Microsoft.ML.TorchSharp.Tests (6)
NerTests.cs (3)
69var chain = new EstimatorChain<ITransformer>(); 148var chain = new EstimatorChain<ITransformer>(); 222var chain = new EstimatorChain<ITransformer>();
ObjectDetectionTests.cs (1)
44var chain = new EstimatorChain<ITransformer>();
QATests.cs (1)
42var chain = new EstimatorChain<ITransformer>();
TextClassificationTests.cs (1)
97var chain = new EstimatorChain<ITransformer>();
Microsoft.ML.Transforms (2)
Text\WordBagTransform.cs (2)
464var chain = new EstimatorChain<ITransformer>(); 682var estimator = new EstimatorChain<ITransformer>();
374 references to EstimatorChain
Microsoft.ML.AutoML (13)
API\BinaryClassificationExperiment.cs (2)
385var pipeline = _pipeline.BuildFromOption(_context, parameter); 389var refitPipeline = _pipeline.BuildFromOption(refitContext, parameter);
API\MulticlassClassificationExperiment.cs (2)
365var pipeline = _pipeline.BuildFromOption(_context, parameter); 367var refitPipeline = _pipeline.BuildFromOption(refitContext, parameter);
API\RegressionExperiment.cs (2)
392var pipeline = _pipeline.BuildFromOption(_context, parameter); 394var refitPipeline = _pipeline.BuildFromOption(refitContext, parameter);
AutoMLExperiment\Runner\SweepablePipelineRunner.cs (1)
40var mlnetPipeline = _pipeline.BuildFromOption(_mLContext, parameter);
AutoMLExperiment\TrialResult.cs (1)
67public EstimatorChain<ITransformer> Pipeline { get; set; }
SweepableEstimator\SweepableEstimatorPipeline.cs (2)
75public EstimatorChain<ITransformer> BuildTrainingPipeline(MLContext context, Parameter parameter) 78var pipeline = new EstimatorChain<ITransformer>();
SweepableEstimator\SweepablePipeline.cs (3)
17public class SweepablePipeline : ISweepable<EstimatorChain<ITransformer>> 84public EstimatorChain<ITransformer> BuildFromOption(MLContext context, Parameter parameter) 87var pipeline = new EstimatorChain<ITransformer>();
Microsoft.ML.Core.Tests (1)
UnitTests\TestEntryPoints.cs (1)
1374var pipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText")
Microsoft.ML.Data (11)
DataLoadSave\CompositeLoaderEstimator.cs (2)
16private readonly EstimatorChain<TLastTransformer> _estimatorChain; 18public CompositeLoaderEstimator(IDataLoaderEstimator<TSource, IDataLoader<TSource>> start, EstimatorChain<TLastTransformer> estimatorChain = null)
DataLoadSave\EstimatorChain.cs (4)
36_host = env?.Register(nameof(EstimatorChain<TLastTransformer>)); 91public EstimatorChain<TNewTrans> Append<TNewTrans>(IEstimator<TNewTrans> estimator, TransformerScope scope = TransformerScope.Everything) 103/// Adding a cache checkpoint at the begin or end of an <see cref="EstimatorChain{TLastTransformer}"/> is meaningless and should be avoided. 108public EstimatorChain<TLastTransformer> AppendCacheCheckpoint(IHostEnvironment env)
DataLoadSave\EstimatorExtensions.cs (4)
46public static EstimatorChain<TTrans> Append<TTrans>( 54if (start is EstimatorChain<ITransformer> est) 67public static EstimatorChain<TTrans> AppendCacheCheckpoint<TTrans>(this IEstimator<TTrans> start, IHostEnvironment env) 128/// with many objects, so we may need to build a chain of estimators via <see cref="EstimatorChain{TLastTransformer}"/> where the
Training\TrainerInputBase.cs (1)
45/// like <see cref="EstimatorChain{TLastTransformer}.AppendCacheCheckpoint(IHostEnvironment)"/>.
Microsoft.ML.DnnImageFeaturizer.AlexNet (4)
AlexNetExtension.cs (4)
26public static EstimatorChain<ColumnCopyingTransformer> AlexNet(this DnnImageModelSelector dnnModelContext, IHostEnvironment env, string outputColumnName, string inputColumnName) 37public static EstimatorChain<ColumnCopyingTransformer> AlexNet(this DnnImageModelSelector dnnModelContext, IHostEnvironment env, string outputColumnName, string inputColumnName, string modelDir) 39var modelChain = new EstimatorChain<ColumnCopyingTransformer>(); 49var modelChain2 = modelChain.Append(prepEstimator);
Microsoft.ML.DnnImageFeaturizer.ResNet101 (4)
ResNet101Extension.cs (4)
26public static EstimatorChain<ColumnCopyingTransformer> ResNet101(this DnnImageModelSelector dnnModelContext, IHostEnvironment env, string outputColumnName, string inputColumnName) 37public static EstimatorChain<ColumnCopyingTransformer> ResNet101(this DnnImageModelSelector dnnModelContext, IHostEnvironment env, string outputColumnName, string inputColumnName, string modelDir) 39var modelChain = new EstimatorChain<ColumnCopyingTransformer>(); 49var modelChain2 = modelChain.Append(prepEstimator);
Microsoft.ML.DnnImageFeaturizer.ResNet18 (4)
ResNet18Extension.cs (4)
26public static EstimatorChain<ColumnCopyingTransformer> ResNet18(this DnnImageModelSelector dnnModelContext, IHostEnvironment env, string outputColumnName, string inputColumnName) 37public static EstimatorChain<ColumnCopyingTransformer> ResNet18(this DnnImageModelSelector dnnModelContext, IHostEnvironment env, string outputColumnName, string inputColumnName, string modelDir) 39var modelChain = new EstimatorChain<ColumnCopyingTransformer>(); 49var modelChain2 = modelChain.Append(prepEstimator);
Microsoft.ML.DnnImageFeaturizer.ResNet50 (4)
ResNet50Extension.cs (4)
26public static EstimatorChain<ColumnCopyingTransformer> ResNet50(this DnnImageModelSelector dnnModelContext, IHostEnvironment env, string outputColumnName, string inputColumnName) 37public static EstimatorChain<ColumnCopyingTransformer> ResNet50(this DnnImageModelSelector dnnModelContext, IHostEnvironment env, string outputColumnName, string inputColumnName, string modelDir) 39var modelChain = new EstimatorChain<ColumnCopyingTransformer>(); 49var modelChain2 = modelChain.Append(prepEstimator);
Microsoft.ML.Fairlearn (1)
Reductions\GridSearchTrialRunner.cs (1)
55var pipeline = _pipeline.BuildFromOption(_context, settings.Parameter["_pipeline_"]);
Microsoft.ML.IntegrationTests (55)
Datasets\Iris.cs (1)
55var pipeline = mlContext.Transforms.CustomMapping(generateGroupId, null)
Datasets\TrivialMatrixFactorization.cs (1)
30var pipeline = mlContext.Transforms.Conversion.MapValueToKey("MatrixColumnIndex")
DataTransformation.cs (3)
137var pipeline = mlContext.Transforms.Text.FeaturizeText("Features", 175var pipeline = mlContext.Transforms.Concatenate("Features", Iris.Features) 202var pipeline = mlContext.Transforms.Concatenate("Features", Iris.Features)
Debugging.cs (2)
107var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 174var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features)
Evaluation.cs (7)
65var pipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText") 94var pipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText") 123var pipeline = mlContext.Transforms.Concatenate("Features", Iris.Features) 151var pipeline = mlContext.Transforms.Concatenate("Features", Iris.Features) 176var pipeline = mlContext.Transforms.Concatenate("Features", Iris.Features) 270var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 300var pipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText")
Explainability.cs (8)
38var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 96var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 120var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 147var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 174var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 211var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 248var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 286var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features)
IntrospectiveTraining.cs (9)
38var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 81var pipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText") 143var pipeline = mlContext.Transforms.Concatenate("Features", Iris.Features) 184var pipeline = mlContext.Transforms.Text.ProduceWordBags("SentimentBag", "SentimentText") 225var pipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText") 264var pipeline = mlContext.Transforms.Concatenate("Features", Iris.Features) 292var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 337var pipeline = mlContext.Transforms.Concatenate("NumericalFeatures", Adult.NumericalFeatures) 394var pipeline = mlContext.Transforms.Concatenate("Features", Iris.Features)
ModelFiles.cs (2)
48var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 95var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features)
ONNX.cs (3)
40var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 90var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 142var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features)
Prediction.cs (1)
50var pipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText")
SchemaDefinitionTests.cs (3)
36var pipeline1 = _ml.Transforms.Categorical.OneHotEncoding("Cat", "Workclass", maximumNumberOfKeys: 3) 40var pipeline2 = _ml.Transforms.Categorical.OneHotEncoding("Cat", "Workclass", maximumNumberOfKeys: 4) 66var pipeline = _ml.Transforms.Categorical.OneHotEncoding("Categories")
Training.cs (11)
41var featurizationPipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText") 92var featurizationPipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText") 136var featurizationPipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText") 180var featurizationPipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText") 224var featurizationPipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText") 266var featurizationPipeline = mlContext.Transforms.Concatenate("Features", Iris.Features) 317var featurizationPipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 361var featurizationPipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 406var featurizationPipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText") 455var binaryClassificationPipeline = mlContext.Transforms.Concatenate("Features", Iris.Features) 486var binaryClassificationPipeline = mlContext.Transforms.Concatenate("Features", Iris.Features)
Validation.cs (4)
41var pipeline = mlContext.Transforms.Concatenate("Features", HousingRegression.Features) 68var dataProcessPipeline = mlContext.Transforms.Concatenate("Features", new[] { "FeatureVectorA", "FeatureVectorB" }).Append( 86var trainingPipeline = dataProcessPipeline.Append(trainer); 154var pipeline = mlContext.Transforms.Concatenate("Features", Iris.Features)
Microsoft.ML.OnnxTransformer (5)
DnnImageFeaturizerTransform.cs (4)
18/// <seealso cref="OnnxCatalog.DnnFeaturizeImage(TransformsCatalog, string, Func{DnnImageFeaturizerInput, EstimatorChain{ColumnCopyingTransformer}}, string)"/> 82/// <seealso cref="OnnxCatalog.DnnFeaturizeImage(TransformsCatalog, string, Func{DnnImageFeaturizerInput, EstimatorChain{ColumnCopyingTransformer}}, string)"/> 85private readonly EstimatorChain<ColumnCopyingTransformer> _modelChain; 98internal DnnImageFeaturizerEstimator(IHostEnvironment env, string outputColumnName, Func<DnnImageFeaturizerInput, EstimatorChain<ColumnCopyingTransformer>> modelFactory, string inputColumnName = null)
OnnxCatalog.cs (1)
495Func<DnnImageFeaturizerInput, EstimatorChain<ColumnCopyingTransformer>> modelFactory,
Microsoft.ML.OnnxTransformerTest (8)
DnnImageFeaturizerTest.cs (4)
109var pipe = ML.Transforms.LoadImages("data_0", imageFolder, "imagePath") 221var dataProcessPipeline = ML.Transforms.Conversion.MapValueToKey("Label", "Label") 230var trainer = ML.MulticlassClassification.Trainers.OneVersusAll(ML.BinaryClassification.Trainers.AveragedPerceptron(labelColumnName: "Label", numberOfIterations: 10, featureColumnName: "Features"), labelColumnName: "Label") 233var trainingPipeline = dataProcessPipeline.Append(trainer);
OnnxTransformTests.cs (4)
254var pipe = ML.Transforms.LoadImages("data_0", imageFolder, "imagePath") 305var pipe = ML.Transforms.LoadImages("data_0", imageFolder, "imagePath") 643var pipeline = ML.Transforms.ExtractPixels("data_0", "Image") // Map column "Image" to column "data_0" 1134var pipe = ML.Transforms.LoadImages("data_0", imageFolder, "imagePath")
Microsoft.ML.PerformanceTests (7)
ImageClassificationBench.cs (1)
91var pipeline = _mlContext.MulticlassClassification.Trainers.ImageClassification(options)
KMeansAndLogisticRegressionBench.cs (1)
36var estimatorPipeline = ml.Transforms.Categorical.OneHotEncoding("CatFeatures")
PredictionEngineBench.cs (2)
57var pipeline = new ColumnConcatenatingEstimator(env, "Features", new[] { "SepalLength", "SepalWidth", "PetalLength", "PetalWidth" }) 93var pipeline = mlContext.Transforms.Text.FeaturizeText("Features", "SentimentText")
RffTransform.cs (1)
45var pipeline = mlContext.Transforms.ApproximatedKernelMap("FeaturesRFF", "Features")
StochasticDualCoordinateAscentClassifierBench.cs (1)
78var pipeline = new ColumnConcatenatingEstimator(_mlContext, "Features", new[] { "SepalLength", "SepalWidth", "PetalLength", "PetalWidth" })
TextPredictionEngineCreation.cs (1)
28var pipeline = _context.Transforms.Text.FeaturizeText("Features", "SentimentText")
Microsoft.ML.Predictor.Tests (2)
TestIniModels.cs (2)
530var pipeline = mlContext.Transforms.ReplaceMissingValues("Features") 569var pipeline = mlContext.Transforms.ReplaceMissingValues("Features")
Microsoft.ML.Samples (56)
Dynamic\ModelOperations\OnnxConversion.cs (1)
49var wholePipeline = mlContext.Transforms.CopyColumns("Label", "IsOver50K")
Dynamic\NgramExtraction.cs (2)
52var oneCharsPipeline = charsPipeline 55var twoCharsPipeline = charsPipeline
Dynamic\Trainers\BinaryClassification\PermutationFeatureImportance.cs (1)
27var pipeline = mlContext.Transforms
Dynamic\Trainers\BinaryClassification\PermutationFeatureImportanceLoadFromDisk.cs (1)
23var pipeline = mlContext.Transforms
Dynamic\Trainers\MulticlassClassification\ImageClassification\ImageClassificationDefault.cs (1)
66var pipeline = mlContext.MulticlassClassification.Trainers
Dynamic\Trainers\MulticlassClassification\ImageClassification\LearningRateSchedulingCifarResnetTransferLearning.cs (1)
102var pipeline = mlContext.MulticlassClassification.Trainers.
Dynamic\Trainers\MulticlassClassification\ImageClassification\ResnetV2101TransferLearningEarlyStopping.cs (1)
91var pipeline = mlContext.Transforms.LoadRawImageBytes(
Dynamic\Trainers\MulticlassClassification\ImageClassification\ResnetV2101TransferLearningTrainTestSplit.cs (1)
82var pipeline = mlContext.MulticlassClassification.Trainers.
Dynamic\Trainers\MulticlassClassification\LbfgsMaximumEntropy.cs (1)
27var pipeline =
Dynamic\Trainers\MulticlassClassification\LbfgsMaximumEntropyWithOptions.cs (1)
36var pipeline =
Dynamic\Trainers\MulticlassClassification\LightGbm.cs (1)
30var pipeline =
Dynamic\Trainers\MulticlassClassification\LightGbmWithOptions.cs (1)
41var pipeline =
Dynamic\Trainers\MulticlassClassification\LogLossPerClass.cs (1)
27var pipeline =
Dynamic\Trainers\MulticlassClassification\NaiveBayes.cs (1)
33var pipeline =
Dynamic\Trainers\MulticlassClassification\OneVersusAll.cs (1)
27var pipeline =
Dynamic\Trainers\MulticlassClassification\PairwiseCoupling.cs (1)
27var pipeline =
Dynamic\Trainers\MulticlassClassification\PermutationFeatureImportance.cs (1)
28var pipeline = mlContext.Transforms
Dynamic\Trainers\MulticlassClassification\PermutationFeatureImportanceLoadFromDisk.cs (1)
31var pipeline = mlContext.Transforms
Dynamic\Trainers\MulticlassClassification\SdcaMaximumEntropy.cs (1)
35var pipeline =
Dynamic\Trainers\MulticlassClassification\SdcaMaximumEntropyWithOptions.cs (1)
45var pipeline =
Dynamic\Trainers\MulticlassClassification\SdcaNonCalibrated.cs (1)
35var pipeline =
Dynamic\Trainers\MulticlassClassification\SdcaNonCalibratedWithOptions.cs (1)
45var pipeline =
Dynamic\Trainers\Ranking\PermutationFeatureImportance.cs (1)
27var pipeline = mlContext.Transforms.Concatenate("Features",
Dynamic\Trainers\Ranking\PermutationFeatureImportanceLoadFromDisk.cs (1)
29var pipeline = mlContext.Transforms.Concatenate("Features",
Dynamic\Trainers\Regression\LightGbmAdvanced.cs (1)
39var pipeline = mlContext.Transforms.Concatenate("Features",
Dynamic\Trainers\Regression\LightGbmWithOptionsAdvanced.cs (1)
40var pipeline = mlContext.Transforms.Concatenate(
Dynamic\Trainers\Regression\PermutationFeatureImportance.cs (1)
28var pipeline = mlContext.Transforms.Concatenate(
Dynamic\Trainers\Regression\PermutationFeatureImportanceLoadFromDisk.cs (1)
30var pipeline = mlContext.Transforms.Concatenate(
Dynamic\Transforms\ApplyONNXModelWithInMemoryImages.cs (1)
45var pipeline = mlContext.Transforms.ExtractPixels("data_0", "Image")
Dynamic\Transforms\CalculateFeatureContribution.cs (1)
25var transformPipeline = mlContext.Transforms.Concatenate("Features",
Dynamic\Transforms\CalculateFeatureContributionCalibrated.cs (1)
25var transformPipeline = mlContext.Transforms.Concatenate("Features",
Dynamic\Transforms\Concatenate.cs (1)
49var pipeline = mlContext.Transforms.Conversion.ConvertType("Feature3",
Dynamic\Transforms\Conversion\Hash.cs (1)
43var pipeline = mlContext.Transforms.Conversion.Hash("CategoryHashed",
Dynamic\Transforms\Conversion\KeyToValueToKey.cs (3)
30var defaultPipeline = mlContext.Transforms.Text.TokenizeIntoWords( 41var customizedPipeline = mlContext.Transforms.Text.TokenizeIntoWords( 85var pipeline = defaultPipeline.Append(mlContext.Transforms.Conversion
Dynamic\Transforms\Conversion\MapKeyToValueMultiColumn.cs (1)
30var pipeline =
Dynamic\Transforms\Conversion\MapKeyToVector.cs (1)
42var pipeline = mlContext.Transforms.Conversion.MapKeyToVector(
Dynamic\Transforms\Conversion\MapValue.cs (1)
56var pipeline = mlContext.Transforms.Conversion.MapValue(
Dynamic\Transforms\Expression.cs (1)
32var pipeline = mlContext.Transforms.Expression("Expr1", "(x,y)=>log(y)+x",
Dynamic\Transforms\FeatureSelection\SelectFeaturesBasedOnCount.cs (1)
36var pipeline =
Dynamic\Transforms\ImageAnalytics\ConvertToGrayScale.cs (1)
45var pipeline = mlContext.Transforms.LoadImages("ImageObject",
Dynamic\Transforms\ImageAnalytics\ConvertToImage.cs (1)
32var pipeline = mlContext.Transforms.ConvertToImage(imageHeight,
Dynamic\Transforms\ImageAnalytics\DnnFeaturizeImage.cs (1)
47var pipeline = mlContext.Transforms.LoadImages("ImageObject",
Dynamic\Transforms\ImageAnalytics\ExtractPixels.cs (1)
47var pipeline = mlContext.Transforms.LoadImages("ImageObject",
Dynamic\Transforms\ImageAnalytics\ResizeImages.cs (1)
44var pipeline = mlContext.Transforms.LoadImages("ImageObject",
Dynamic\Transforms\Text\ApplyCustomWordEmbedding.cs (1)
47var textPipeline = mlContext.Transforms.Text.NormalizeText("Text")
Dynamic\Transforms\Text\ApplyWordEmbedding.cs (1)
36var textPipeline = mlContext.Transforms.Text.NormalizeText("Text")
Dynamic\Transforms\Text\LatentDirichletAllocation.cs (1)
40var pipeline = mlContext.Transforms.Text.NormalizeText("NormalizedText",
Dynamic\Transforms\Text\ProduceHashedNgrams.cs (1)
45var textPipeline = mlContext.Transforms.Text.TokenizeIntoWords("Tokens",
Dynamic\Transforms\Text\ProduceNgrams.cs (1)
52var textPipeline = mlContext.Transforms.Text.TokenizeIntoWords("Tokens",
Dynamic\Transforms\Text\RemoveDefaultStopWords.cs (1)
30var textPipeline = mlContext.Transforms.Text.TokenizeIntoWords("Words",
Dynamic\Transforms\Text\RemoveStopWords.cs (1)
29var textPipeline = mlContext.Transforms.Text.TokenizeIntoWords("Words",
Dynamic\Transforms\Text\TokenizeIntoCharactersAsKeys.cs (1)
28var textPipeline = mlContext.Transforms.Text
Dynamic\WithOnFitDelegate.cs (1)
43var pipeline =
Microsoft.ML.Samples.GPU (4)
docs\samples\Microsoft.ML.Samples\Dynamic\Trainers\MulticlassClassification\ImageClassification\ImageClassificationDefault.cs (1)
66var pipeline = mlContext.MulticlassClassification.Trainers
docs\samples\Microsoft.ML.Samples\Dynamic\Trainers\MulticlassClassification\ImageClassification\LearningRateSchedulingCifarResnetTransferLearning.cs (1)
102var pipeline = mlContext.MulticlassClassification.Trainers.
docs\samples\Microsoft.ML.Samples\Dynamic\Trainers\MulticlassClassification\ImageClassification\ResnetV2101TransferLearningEarlyStopping.cs (1)
91var pipeline = mlContext.Transforms.LoadRawImageBytes(
docs\samples\Microsoft.ML.Samples\Dynamic\Trainers\MulticlassClassification\ImageClassification\ResnetV2101TransferLearningTrainTestSplit.cs (1)
82var pipeline = mlContext.MulticlassClassification.Trainers.
Microsoft.ML.SamplesUtils (1)
SamplesDatasetUtils.cs (1)
91var pipeline = mlContext.Transforms.CopyColumns("Label", "IsOver50K")
Microsoft.ML.TensorFlow.Tests (16)
TensorFlowEstimatorTests.cs (3)
162var pipe = ML.Transforms.LoadImages("Input", imageFolder, "imagePath") 205var pipe = ML.Transforms.LoadImages("Input", imageFolder, "imagePath") 255var pipe = ML.Transforms.LoadImages("Input", imageFolder, "imagePath")
TensorflowTests.cs (13)
148var pipeEstimator = new ImageLoadingEstimator(_mlContext, imageFolder, ("ImageReal", "ImagePath")) 668var pipe = _mlContext.Transforms.CopyColumns("reshape_input", "Placeholder") 823var pipe = _mlContext.Transforms.CopyColumns("Features", "Placeholder") 892var pipe = _mlContext.Transforms.CopyColumns("reshape_input", "Placeholder") 1019var pipeEstimator = new ImageLoadingEstimator(_mlContext, imageFolder, 1116var pipeline = _mlContext.Transforms.ResizeImages("ResizedImage", imageWidth, imageHeight, nameof(InMemoryImage.LoadedImage)) 1158var pipeEstimator = new ImageLoadingEstimator(_mlContext, imageFolder, ("ImageReal", "ImagePath")) 1350var pipeline = tensorFlowModel.ScoreTensorFlowModel(new[] { "Original_A", "Joined_Splited_Text" }, new[] { "A", "B" }) 1418var pipeline = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath") 1521var pipeline = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath") 1679var pipeline = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath") 1813var pipeline = _mlContext.Transforms.LoadRawImageBytes("Image", _fullImagesetFolderPath, "ImagePath") 2062var pipeline = _mlContext.Transforms.LoadImages("Input", imageFolder, "imagePath")
Microsoft.ML.Tests (156)
CachingTests.cs (1)
45var pipe = ML.Transforms.CopyColumns("F1", "Features")
CalibratedModelParametersTests.cs (1)
133var pipeline = ML.Transforms.Concatenate("Features", "X1", "X2Important", "X3", "X4Rand")
DatabaseLoaderTests.cs (1)
203var pipeline = mlContext.Transforms.Conversion.MapValueToKey("Label")
FeatureContributionTests.cs (5)
33var estPipe = ML.Transforms.CalculateFeatureContribution(model) 201var est = ML.Transforms.CalculateFeatureContribution(model, numberOfPositiveContributions: 3, numberOfNegativeContributions: 0) 225var est = ML.Transforms.CalculateFeatureContribution(model, numberOfPositiveContributions: 3, numberOfNegativeContributions: 0) 314var pipeline = ML.Transforms.Concatenate("Features", "X1", "X2VBuffer", "X3Important") 424var dataProcessPipeline = ML.Transforms.CopyColumns(outputColumnName: DefaultColumnNames.Label, inputColumnName: nameof(TaxiTrip.FareAmount))
ImagesTests.cs (3)
50var pipe = new ImageLoadingEstimator(env, imageFolder, ("ImageReal", "ImagePath")) 74var pipe = new ImageLoadingEstimator(env, imageFolder, ("ImageReal", "ImagePath")) 1021var pipe = new ImageLoadingEstimator(env, imageFolder, ("ImageReal", "ImagePath"))
OnnxConversionTest.cs (26)
76var dynamicPipeline = 153var pipeline = mlContext.Transforms.NormalizeMinMax("Features"). 245var initialPipeline = mlContext.Transforms.ReplaceMissingValues("Features"). 249var pipeline = initialPipeline.Append(estimator); 267var pipeline = new VectorWhiteningEstimator(mlContext, "whitened1", "features") 276private (IDataView, List<IEstimator<ITransformer>>, EstimatorChain<NormalizingTransformer>) GetEstimatorsForOnnxConversionTests() 300var initialPipeline = ML.Transforms.ReplaceMissingValues("Features"). 313var pipelineEstimators = initialPipeline.Append(estimator).Append(calibrator); 390var pipeline = new TextNormalizingEstimator(mlContext, keepDiacritics: true, columns: new[] { ("NormText", "text") }).Append( 572var pipeline = 603var pipeline = 628var pipeline = mlContext.Transforms.ReplaceMissingValues("Features"). 792var pipeline = mlContext.Transforms.Categorical.OneHotEncoding("F2", "F2", Transforms.OneHotEncodingEstimator.OutputKind.Bag) 1167var pipeline = mlContext.Transforms.IndicateMissingValues(new[] { new InputOutputColumnPair("MissingIndicator", "Features"), }) 1541var pipeline = mlContext.Transforms.Text.TokenizeIntoWords("Words", "Text") 1565var pipeline = mlContext.Transforms.Text.TokenizeIntoWords("Words", "Text") 1680var initialPipeline = mlContext.Transforms.ReplaceMissingValues("Features") 1686var pipeline = initialPipeline.Append(estimator); 1898var pipeline = mlContext.Transforms.ReplaceMissingValues("Size").Append(mlContext.Transforms.SelectColumns(new[] { "Size", "Shape", "Thickness", "Label" })); 1956var initialPipeline = mlContext.Transforms.ReplaceMissingValues("MyFeatureVector"). 1960var pipeline = initialPipeline.Append(estimator); 2005var initialPipeline = mlContext.Transforms.ReplaceMissingValues("MyFeatureVector") 2011var pipeline = initialPipeline.Append(estimator); 2202var chain = new EstimatorChain<ITransformer>().Append(pipeline); 2219private void TestPipeline<TLastTransformer, TRow>(EstimatorChain<TLastTransformer> pipeline, IEnumerable<TRow> data, string onnxFileName, ColumnComparison[] columnsToCompare, SchemaDefinition schemaDefinition = null, string onnxTxtName = null, string onnxTxtSubDir = null) 2238private void TestPipeline<TLastTransformer>(EstimatorChain<TLastTransformer> pipeline, IDataView dataView, string onnxFileName, ColumnComparison[] columnsToCompare, string onnxTxtName = null, string onnxTxtSubDir = null)
PermutationFeatureImportanceTests.cs (2)
858var pipeline = ML.Transforms.Concatenate("Features", "X1", "X2Important", "X3", "X4Rand") 938var pipeline = ML.Transforms.Concatenate("Features", "X1", "X2VBuffer", "X3Important")
Scenarios\Api\CookbookSamples\CookbookSamplesDynamicApi.cs (14)
101var pipeline = 167var pipeline = 228var pipeline = 264var finalPipeline = pipeline.Append(mlContext.Transforms.Conversion.MapKeyToValue("Data", "PredictedLabel")); 351var pipeline = context.Transforms.Concatenate("Features", "CrimesPerCapita", "PercentResidental", "PercentNonRetail", "CharlesRiver", "NitricOxides", 391var pipeline = context.Transforms.Concatenate("Features", "CrimesPerCapita", "PercentResidental", "PercentNonRetail", "CharlesRiver", "NitricOxides", 426var pipeline = context.Transforms.Concatenate("Features", "CrimesPerCapita", "PercentResidental", "PercentNonRetail", "CharlesRiver", "NitricOxides", 462var pipeline = context.Transforms.Concatenate("Features", "CrimesPerCapita", "PercentResidental", "PercentNonRetail", "CharlesRiver", "NitricOxides", 519var pipeline = 593var pipeline = 612var fullLearningPipeline = pipeline 642var pipeline = 741var estimator = mlContext.Transforms.CustomMapping<InputRow, OutputRow>(CustomMappings.IncomeMapping, nameof(CustomMappings.IncomeMapping)) 779var estimator = mlContext.Transforms.CustomMapping(mapping, null)
Scenarios\Api\Estimators\DecomposableTrainAndPredict.cs (1)
33var pipeline = new ColumnConcatenatingEstimator(ml, "Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth")
Scenarios\Api\Estimators\Extensibility.cs (1)
41var pipeline = new ColumnConcatenatingEstimator(ml, "Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth")
Scenarios\Api\Estimators\MultithreadedPrediction.cs (1)
31var pipeline = ml.Transforms.Text.FeaturizeText("Features", "SentimentText")
Scenarios\Api\Estimators\PredictAndMetadata.cs (3)
31var pipeline = ml.Transforms.Concatenate("Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth") 80var pipeline = mlContext.Transforms.Concatenate("Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth") 115var pipelineUnamed = mlContext.Transforms.Conversion.MapValueToKey("Label")
Scenarios\Api\Estimators\SimpleTrainAndPredict.cs (2)
29var pipeline = ml.Transforms.Text.FeaturizeText("Features", "SentimentText") 66var pipeline = ml.Transforms.Text.FeaturizeText("Features", "SentimentText")
Scenarios\IrisPlantClassificationTests.cs (1)
32var pipe = mlContext.Transforms.Concatenate("Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth")
Scenarios\IrisPlantClassificationWithStringLabelTests.cs (1)
36var pipe = mlContext.Transforms.Concatenate("Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth")
Scenarios\RegressionTest.cs (2)
27var dataProcessPipeline = context.Transforms.CopyColumns(outputColumnName: "Label", inputColumnName: "FareAmount") 38var trainingPipeline = dataProcessPipeline.Append(trainer);
Scenarios\WordBagTest.cs (2)
31var textPipeline = 68var textPipeline =
ScenariosWithDirectInstantiation\IrisPlantClassificationTests.cs (1)
30var pipe = mlContext.Transforms.Concatenate("Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth")
TrainerEstimators\FAFMEstimator.cs (1)
25var pipeline = mlContext.Transforms.CopyColumns(DefaultColumnNames.Features, nameof(FfmExample.Field0))
TrainerEstimators\LbfgsTests.cs (4)
23var pipeWithTrainer = pipe.Append(trainer); 37var pipeWithTrainer = pipe.Append(trainer); 167var pipeWithTrainer = pipe.Append(trainer); 189var pipeWithTrainer = pipe.Append(trainer);
TrainerEstimators\MetalinearEstimators.cs (1)
97var pipeline = new ColumnConcatenatingEstimator(Env, "Vars", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth")
TrainerEstimators\SdcaTests.cs (4)
174var sdcaWithoutWeightMulticlass = mlContext.Transforms.Conversion.MapValueToKey("LabelIndex", "Label"). 178var sdcaWithWeightMulticlass = mlContext.Transforms.Conversion.MapValueToKey("LabelIndex", "Label"). 277var pipeline = mlContext.Transforms.Conversion.MapValueToKey("LabelIndex", "Label"). 311var pipeline = mlContext.Transforms.Conversion.MapValueToKey("LabelIndex", "Label").
TrainerEstimators\SymSgdClassificationTests.cs (1)
21var pipeWithTrainer = pipe.Append(trainer);
TrainerEstimators\TrainerEstimators.cs (4)
99var pipeWithTrainer = pipe.AppendCacheCheckpoint(Env).Append(trainer); 130var pipeWithTrainer = pipe.AppendCacheCheckpoint(Env).Append(trainer); 172var pipeWithTrainer = pipe.AppendCacheCheckpoint(Env).Append(trainer); 218var oneHotPipeline = pipeline.Append(ML.Transforms.Categorical.OneHotEncoding("LoggedIn"));
TrainerEstimators\TreeEnsembleFeaturizerTest.cs (13)
330var pipeline = ML.Transforms.FeaturizeByPretrainTreeEnsemble(options) 376var pipeline = ML.Transforms.FeaturizeByFastTreeBinary(options) 415var pipeline = ML.Transforms.FeaturizeByFastForestBinary(options) 454var pipeline = ML.Transforms.FeaturizeByFastTreeRegression(options) 492var pipeline = ML.Transforms.FeaturizeByFastForestRegression(options) 530var pipeline = ML.Transforms.FeaturizeByFastTreeTweedie(options) 568var pipeline = ML.Transforms.FeaturizeByFastTreeRanking(options) 606var pipeline = ML.Transforms.FeaturizeByFastForestRegression(options) 662var pipeline = ML.Transforms.CopyColumns("CopiedFeatures", "Features") 693var secondPipeline = ML.Transforms.CopyColumns("CopiedFeatures", "Features") 739var wrongPipeline = ML.Transforms.FeaturizeByFastTreeBinary(options) 750var pipeline = ML.Transforms.FeaturizeByFastTreeBinary(options) 803var pipeline = ML.Transforms.Conversion.MapValueToKey("KeyLabel", "Label")
TrainerEstimators\TreeEstimators.cs (21)
49var pipeWithTrainer = pipe.Append(trainer); 71var pipeWithTrainer = pipe.Append(trainer); 93var pipeWithTrainer = pipe.Append(trainer); 138var pipeWithTrainer = pipe.Append(trainer); 159var pipeWithTrainer = pipe.Append(trainer); 183var pipeWithTrainer = pipe.Append(trainer); 201var pipeWithTrainer = pipe.Append(trainer); 310var pipe = pipeline.Append(trainer) 327var pipe = pipeline.Append(trainer); 350var pipe = pipeline.Append(trainer) 370var pipe = pipeline.Append(trainer) 395var pipe = pipeline.Append(trainer) 414var pipe = pipeline.Append(trainer) 744var pipeline = 781var pipe = pipeline.Append(trainer) 988var estimator = pipeline.Append(ML.BinaryClassification.Trainers.FastTree( 1006var estimator = pipeline.Append(ML.BinaryClassification.Trainers.FastForest( 1027var estimator = pipeline.Append(context.MulticlassClassification.Trainers.OneVersusAll(context.BinaryClassification.Trainers.FastTree())); 1049var trainer = pipeline.Append(ML.BinaryClassification.Trainers.LightGbm( 1084var trainer = pipeline.Append(context.BinaryClassification.Trainers.LightGbm( 1112var trainer = pipeline.Append(context.MulticlassClassification.Trainers.LightGbm(
Transformers\CategoricalHashTests.cs (1)
89var est = ML.Transforms.Text.TokenizeIntoWords("VarVectorString", "ScalarString")
Transformers\CategoricalTests.cs (2)
109var pipe = mlContext.Transforms.Conversion.ConvertType("A", outputKind: DataKind.Single) 164var est = ML.Transforms.Text.TokenizeIntoWords("VarVectorString", "ScalarString")
Transformers\ConcatTests.cs (1)
65var pipe = ML.Transforms.Concatenate("f1", "float1")
Transformers\ConvertTests.cs (1)
338var pipe = ML.Transforms.Categorical.OneHotEncoding(new[] {
Transformers\ExpressionTransformerTests.cs (1)
40var expr = ML.Transforms.Expression("Expr1", "x=>x/2", "Double").
Transformers\FeatureSelectionTests.cs (6)
41var est = new WordBagEstimator(ML, "bag_of_words", "text") 120var est = ML.Transforms.FeatureSelection.SelectFeaturesBasedOnCount("FeatureSelect", "VectorFloat", count: 1) 177var est = ML.Transforms.FeatureSelection.SelectFeaturesBasedOnMutualInformation("FeatureSelect", "VectorFloat", slotsInOutput: 1, labelColumnName: "Label") 238var pipeline = ML.Transforms.Text.TokenizeIntoWords("Features") 246var pipeline = ML.Transforms.Text.TokenizeIntoWords("Features") 254var pipeline = ML.Transforms.Text.TokenizeIntoWords("Features")
Transformers\HashTests.cs (1)
383var pipeline = ML.Transforms.Concatenate("D", "A")
Transformers\KeyToBinaryVectorEstimatorTest.cs (1)
74var est = ML.Transforms.Conversion.MapKeyToBinaryVector("ScalarString", "A")
Transformers\KeyToValueTests.cs (1)
78var est = ML.Transforms.Conversion.MapKeyToValue("ScalarString", "A")
Transformers\KeyToVectorEstimatorTests.cs (2)
83var est = ML.Transforms.Conversion.MapKeyToVector("ScalarString", "A") 256var pipeline = mlContext.Transforms.Conversion.MapValueToKey("Label")
Transformers\NAIndicatorTests.cs (1)
139var newpipe = pipe.Append(ML.Transforms.IndicateMissingValues("NAA", "CatA"));
Transformers\NAReplaceTests.cs (1)
135var est = ML.Transforms.ReplaceMissingValues("A", "ScalarFloat", replacementMode: MissingValueReplacingEstimator.ReplacementMode.Maximum)
Transformers\NormalizerTests.cs (5)
238var est = context.Transforms.NormalizeMinMax( 666var est = ML.Transforms.NormalizeLpNorm("lpnorm", "features") 701var est = new VectorWhiteningEstimator(ML, "whitened1", "features") 764var est = ML.Transforms.NormalizeLpNorm("lpNorm1", "features") 824var est = ML.Transforms.NormalizeGlobalContrast("gcnNorm1", "features")
Transformers\SelectColumnsTests.cs (3)
134var chain = est.Append(ColumnSelectingEstimator.KeepColumns(Env, "C", "A")); 157var chain = est.Append(ML.Transforms.SelectColumns(new[] { "B", "A" }, true)); 198var est = new ColumnCopyingEstimator(Env, new[] { ("A", "A"), ("B", "B") }).Append(
Transformers\TextFeaturizerTests.cs (6)
469var est = new WordTokenizingEstimator(ML, "words", "text") 536var est = ML.Transforms.Text.NormalizeText("text") 599var est = new WordBagEstimator(ML, "bag_of_words", "text"). 629var est = new WordTokenizingEstimator(ML, "text", "text") 683var est = new WordBagEstimator(env, "bag_of_words", "text"). 782var pipeline = ML.Transforms.Text.ProduceWordBags("Features")
Transformers\TextNormalizer.cs (1)
56var pipeVariations = new TextNormalizingEstimator(ML, columns: new[] { ("NormText", "text") }).Append(
Transformers\ValueMappingTests.cs (3)
105var estimator = new WordTokenizingEstimator(Env, new[]{ 558var estimator = ML.Transforms.Conversion.MapValue("D", keyValuePairs, "A", true). 640var est = ML.Transforms.Text.TokenizeIntoWords("TokenizeB", "B")
Transformers\WordEmbeddingsTests.cs (2)
41var est = ML.Transforms.Text.NormalizeText("NormalizedText", "SentimentText", keepDiacritics: false, keepPunctuations: false) 76var est = ML.Transforms.Text.NormalizeText("NormalizedText", "SentimentText", keepDiacritics: false, keepPunctuations: false)
Microsoft.ML.TimeSeries.Tests (2)
TimeSeriesDirectApi.cs (2)
227var pipeline = ml.Transforms.Text.FeaturizeText("Text_Featurized", "Text") 303var pipeline = ml.Transforms.Text.FeaturizeText("Text_Featurized", "Text")
Microsoft.ML.TorchSharp.Tests (16)
NerTests.cs (6)
69var chain = new EstimatorChain<ITransformer>(); 70var estimator = chain.Append(ML.Transforms.Conversion.MapValueToKey("Label", keyData: labels)) 148var chain = new EstimatorChain<ITransformer>(); 149var estimator = chain.Append(ML.Transforms.Conversion.MapValueToKey("Label", keyData: labels)) 222var chain = new EstimatorChain<ITransformer>(); 223var estimator = chain.Append(ML.Transforms.Conversion.MapValueToKey("Label", keyData: labels))
ObjectDetectionTests.cs (3)
44var chain = new EstimatorChain<ITransformer>(); 46var filteredPipeline = chain.Append(ML.Transforms.Text.TokenizeIntoWords("Labels", separators: new char[] { ',' }), TransformerScope.Training) 63var pipeline = ML.Transforms.Text.TokenizeIntoWords("Labels", separators: new char[] { ',' })
QATests.cs (2)
42var chain = new EstimatorChain<ITransformer>(); 43var estimator = chain.Append(ML.MulticlassClassification.Trainers.QuestionAnswer(maxEpochs: 1));
TextClassificationTests.cs (5)
97var chain = new EstimatorChain<ITransformer>(); 98var estimator = chain.Append(ML.Transforms.Conversion.MapValueToKey("Label", "Sentiment"), TransformerScope.TrainTest) 176var pipeline = 235var estimator = ML.Transforms.Conversion.MapValueToKey("Label", "Sentiment") 320var estimator = ML.MulticlassClassification.Trainers.TextClassification(outputColumnName: "outputColumn", sentence1ColumnName: "Sentence", sentence2ColumnName: "Sentence2", validationSet: preppedData)
Microsoft.ML.Transforms (4)
Dracula\CountTargetEncodingTransformer.cs (2)
423/// will only be applied if the estimator is part of an <see cref="EstimatorChain{TLastTransformer}"/>, when fitting the next estimator in the chain.</param> 496/// will only be applied if the estimator is part of an <see cref="EstimatorChain{TLastTransformer}"/>, when fitting the next estimator in the chain.</param>
Text\WordBagTransform.cs (2)
464var chain = new EstimatorChain<ITransformer>(); 682var estimator = new EstimatorChain<ITransformer>();