|
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class SelectFeaturesBasedOnCount
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable and convert it to an IDataView.
var rawData = GetData();
// Printing the columns of the input data.
Console.WriteLine($"NumericVector StringVector");
foreach (var item in rawData)
Console.WriteLine("{0,-25} {1,-25}", string.Join(",", item
.NumericVector), string.Join(",", item.StringVector));
// NumericVector StringVector
// 4,NaN,6 A,WA,Male
// 4,5,6 A,,Female
// 4,5,6 A,NY,
// 4,0,NaN A,,Male
var data = mlContext.Data.LoadFromEnumerable(rawData);
// We will use the SelectFeaturesBasedOnCount to retain only those slots
// which have at least 'count' non-default and non-missing values per
// slot.
var pipeline =
mlContext.Transforms.FeatureSelection.SelectFeaturesBasedOnCount(
outputColumnName: "NumericVector", count: 3) // Usage on numeric
// column.
.Append(mlContext.Transforms.FeatureSelection
.SelectFeaturesBasedOnCount(outputColumnName: "StringVector",
count: 3)); // Usage on text column.
var transformedData = pipeline.Fit(data).Transform(data);
var convertedData = mlContext.Data.CreateEnumerable<TransformedData>(
transformedData, true);
// Printing the columns of the transformed data.
Console.WriteLine($"NumericVector StringVector");
foreach (var item in convertedData)
Console.WriteLine("{0,-25} {1,-25}", string.Join(",", item.
NumericVector), string.Join(",", item.StringVector));
// NumericVector StringVector
// 4,6 A,Male
// 4,6 A,Female
// 4,6 A,
// 4,NaN A,Male
}
public class TransformedData
{
public float[] NumericVector { get; set; }
public string[] StringVector { get; set; }
}
public class InputData
{
[VectorType(3)]
public float[] NumericVector { get; set; }
[VectorType(3)]
public string[] StringVector { get; set; }
}
/// <summary>
/// Return a few rows of data.
/// </summary>
public static IEnumerable<InputData> GetData()
{
var data = new List<InputData>
{
new InputData
{
NumericVector = new float[] { 4, float.NaN, 6 },
StringVector = new string[] { "A", "WA", "Male"}
},
new InputData
{
NumericVector = new float[] { 4, 5, 6 },
StringVector = new string[] { "A", string.Empty, "Female"}
},
new InputData
{
NumericVector = new float[] { 4, 5, 6 },
StringVector = new string[] { "A", "NY", null}
},
new InputData
{
NumericVector = new float[] { 4, 0, float.NaN },
StringVector = new string[] { "A", null, "Male"}
}
};
return data;
}
}
}
|