|
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class ConvertToImage
{
private const int imageHeight = 224;
private const int imageWidth = 224;
private const int numberOfChannels = 3;
private const int inputSize = imageHeight * imageWidth * numberOfChannels;
// Sample that shows how an input array (of doubles) can be used to interop
// with image related estimators in ML.NET.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(4);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var data = mlContext.Data.LoadFromEnumerable(dataPoints);
// Image loading pipeline.
var pipeline = mlContext.Transforms.ConvertToImage(imageHeight,
imageWidth, "Image", "Features")
.Append(mlContext.Transforms.ExtractPixels("Pixels", "Image"));
var transformedData = pipeline.Fit(data).Transform(data);
// Preview the transformedData.
PrintColumns(transformedData);
// Features Image Pixels
// 185,209,196,142,52... {Width=224, Height=224} 185,209,196,142,52...
// 182,235,84,23,87... {Width=224, Height=224} 182,235,84,23,87...
// 192,214,247,22,38... {Width=224, Height=224} 192,214,247,22,38...
// 242,161,141,223,192... {Width=224, Height=224} 242,161,141,223,192...
}
private static void PrintColumns(IDataView transformedData)
{
Console.WriteLine("{0, -25} {1, -25} {2, -25}", "Features", "Image",
"Pixels");
using (var cursor = transformedData.GetRowCursor(transformedData
.Schema))
{
// Note that it is best to get the getters and values *before*
// iteration, so as to facilitate buffer sharing (if applicable), and
// column -type validation once, rather than many times.
VBuffer<float> features = default;
VBuffer<float> pixels = default;
MLImage imageObject = null;
var featuresGetter = cursor.GetGetter<VBuffer<float>>(cursor.Schema[
"Features"]);
var pixelsGetter = cursor.GetGetter<VBuffer<float>>(cursor.Schema[
"Pixels"]);
var imageGetter = cursor.GetGetter<MLImage>(cursor.Schema["Image"]);
while (cursor.MoveNext())
{
featuresGetter(ref features);
pixelsGetter(ref pixels);
imageGetter(ref imageObject);
Console.WriteLine("{0, -25} {1, -25} {2, -25}", string.Join(",",
features.DenseValues().Take(5)) + "...",
$"Width={imageObject.Width}, Height={imageObject.Height}",
string.Join(",", pixels.DenseValues().Take(5)) + "...");
}
// Dispose the image.
imageObject.Dispose();
}
}
private class DataPoint
{
[VectorType(inputSize)]
public float[] Features { get; set; }
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
for (int i = 0; i < count; i++)
yield return new DataPoint
{
Features = Enumerable.Repeat(0,
inputSize).Select(x => (float)random.Next(0, 256)).ToArray()
};
}
}
}
|