|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Threading.Tasks;
using System.Threading;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.ML.Data;
using Microsoft.ML.Runtime;
using Microsoft.ML.Trainers;
using Microsoft.ML.Trainers.FastTree;
using Microsoft.ML.Trainers.LightGbm;
namespace Microsoft.ML.AutoML
{
/// <summary>
/// Settings for AutoML experiments on regression datasets.
/// </summary>
public sealed class RegressionExperimentSettings : ExperimentSettings
{
/// <summary>
/// Metric that AutoML will try to optimize over the course of the experiment.
/// </summary>
/// <value>The default value is <see cref="RegressionMetric.RSquared" />.</value>
public RegressionMetric OptimizingMetric { get; set; }
/// <summary>
/// Collection of trainers the AutoML experiment can leverage.
/// </summary>
/// <value>
/// The default value is a collection auto-populated with all possible trainers (all values of <see cref="RegressionTrainer" />).
/// </value>
public ICollection<RegressionTrainer> Trainers { get; }
/// <summary>
/// Initializes a new instance of <see cref="RegressionExperimentSettings"/>.
/// </summary>
public RegressionExperimentSettings()
{
OptimizingMetric = RegressionMetric.RSquared;
Trainers = Enum.GetValues(typeof(RegressionTrainer)).OfType<RegressionTrainer>().ToList();
}
}
/// <summary>
/// Regression metric that AutoML will aim to optimize in its sweeping process during an experiment.
/// </summary>
public enum RegressionMetric
{
/// <summary>
/// See <see cref="RegressionMetrics.MeanAbsoluteError"/>.
/// </summary>
MeanAbsoluteError,
/// <summary>
/// See <see cref="RegressionMetrics.MeanSquaredError"/>.
/// </summary>
MeanSquaredError,
/// <summary>
/// See <see cref="RegressionMetrics.RootMeanSquaredError"/>.
/// </summary>
RootMeanSquaredError,
/// <summary>
/// See <see cref="RegressionMetrics.RSquared"/>.
/// </summary>
RSquared
}
/// <summary>
/// Enumeration of ML.NET multiclass classification trainers used by AutoML.
/// </summary>
public enum RegressionTrainer
{
/// <summary>
/// See <see cref="FastForestRegressionTrainer"/>.
/// </summary>
FastForest,
/// <summary>
/// See <see cref="FastTreeRegressionTrainer"/>.
/// </summary>
FastTree,
/// <summary>
/// See <see cref="FastTreeTweedieTrainer"/>.
/// </summary>
FastTreeTweedie,
/// <summary>
/// See <see cref="LightGbmRegressionTrainer"/>.
/// </summary>
LightGbm,
/// <summary>
/// See <see cref="LbfgsPoissonRegressionTrainer"/>.
/// </summary>
LbfgsPoissonRegression,
/// <summary>
/// See <see cref="SdcaRegressionTrainer"/>.
/// </summary>
StochasticDualCoordinateAscent,
}
/// <summary>
/// AutoML experiment on regression classification datasets.
/// </summary>
/// <example>
/// <format type="text/markdown">
/// <![CDATA[
/// [!code-csharp[RegressionExperiment](~/../docs/samples/docs/samples/Microsoft.ML.AutoML.Samples/RegressionExperiment.cs)]
/// ]]></format>
/// </example>
public sealed class RegressionExperiment : ExperimentBase<RegressionMetrics, RegressionExperimentSettings>
{
private readonly AutoMLExperiment _experiment;
private const string Features = "__Features__";
private SweepablePipeline _pipeline;
internal RegressionExperiment(MLContext context, RegressionExperimentSettings settings)
: base(context,
new RegressionMetricsAgent(context, settings.OptimizingMetric),
new OptimizingMetricInfo(settings.OptimizingMetric),
settings,
TaskKind.Regression,
TrainerExtensionUtil.GetTrainerNames(settings.Trainers))
{
_experiment = context.Auto().CreateExperiment();
if (settings.MaximumMemoryUsageInMegaByte is double d)
{
_experiment.SetMaximumMemoryUsageInMegaByte(d);
}
_experiment.SetTrainingTimeInSeconds(Settings.MaxExperimentTimeInSeconds);
_experiment.SetMaxModelToExplore(Settings.MaxModels);
}
public override ExperimentResult<RegressionMetrics> Execute(IDataView trainData, ColumnInformation columnInformation, IEstimator<ITransformer> preFeaturizer = null, IProgress<RunDetail<RegressionMetrics>> progressHandler = null)
{
var label = columnInformation.LabelColumnName;
_experiment.SetRegressionMetric(Settings.OptimizingMetric, label);
// Cross val threshold for # of dataset rows --
// If dataset has < threshold # of rows, use cross val.
// Else, run experiment using train-validate split.
const int crossValRowCountThreshold = 15000;
var rowCount = DatasetDimensionsUtil.CountRows(trainData, crossValRowCountThreshold);
// TODO
// split cross validation result according to sample key as well.
if (rowCount < crossValRowCountThreshold)
{
int numCrossValFolds = 10;
_experiment.SetDataset(trainData, numCrossValFolds);
_pipeline = CreateRegressionPipeline(trainData, columnInformation, preFeaturizer);
_experiment.SetPipeline(_pipeline);
TrialResultMonitor<RegressionMetrics> monitor = null;
_experiment.SetMonitor((provider) =>
{
var channel = provider.GetService<IChannel>();
var pipeline = provider.GetService<SweepablePipeline>();
monitor = new TrialResultMonitor<RegressionMetrics>(channel, pipeline);
monitor.OnTrialCompleted += (o, e) =>
{
var detail = BestResultUtil.ToRunDetail(Context, e, _pipeline);
progressHandler?.Report(detail);
};
return monitor;
});
_experiment.SetTrialRunner<RegressionTrialRunner>();
_experiment.Run();
var runDetails = monitor.RunDetails.Select(e => BestResultUtil.ToRunDetail(Context, e, _pipeline));
var bestRun = BestResultUtil.ToRunDetail(Context, monitor.BestRun, _pipeline);
var result = new ExperimentResult<RegressionMetrics>(runDetails, bestRun);
return result;
}
else
{
var splitData = Context.Data.TrainTestSplit(trainData);
return Execute(splitData.TrainSet, splitData.TestSet, columnInformation, preFeaturizer, progressHandler);
}
}
public override ExperimentResult<RegressionMetrics> Execute(IDataView trainData, IDataView validationData, ColumnInformation columnInformation, IEstimator<ITransformer> preFeaturizer = null, IProgress<RunDetail<RegressionMetrics>> progressHandler = null)
{
var label = columnInformation.LabelColumnName;
_experiment.SetRegressionMetric(Settings.OptimizingMetric, label);
_experiment.SetDataset(trainData, validationData);
_pipeline = CreateRegressionPipeline(trainData, columnInformation, preFeaturizer);
_experiment.SetPipeline(_pipeline);
// set monitor
TrialResultMonitor<RegressionMetrics> monitor = null;
_experiment.SetMonitor((provider) =>
{
var channel = provider.GetService<IChannel>();
var pipeline = provider.GetService<SweepablePipeline>();
monitor = new TrialResultMonitor<RegressionMetrics>(channel, pipeline);
monitor.OnTrialCompleted += (o, e) =>
{
var detail = BestResultUtil.ToRunDetail(Context, e, _pipeline);
progressHandler?.Report(detail);
};
return monitor;
});
_experiment.SetTrialRunner<RegressionTrialRunner>();
_experiment.Run();
var runDetails = monitor.RunDetails.Select(e => BestResultUtil.ToRunDetail(Context, e, _pipeline));
var bestRun = BestResultUtil.ToRunDetail(Context, monitor.BestRun, _pipeline);
var result = new ExperimentResult<RegressionMetrics>(runDetails, bestRun);
return result;
}
public override ExperimentResult<RegressionMetrics> Execute(IDataView trainData, IDataView validationData, string labelColumnName = "Label", IEstimator<ITransformer> preFeaturizer = null, IProgress<RunDetail<RegressionMetrics>> progressHandler = null)
{
var columnInformation = new ColumnInformation()
{
LabelColumnName = labelColumnName,
};
return Execute(trainData, validationData, columnInformation, preFeaturizer, progressHandler);
}
public override ExperimentResult<RegressionMetrics> Execute(IDataView trainData, string labelColumnName = "Label", string samplingKeyColumn = null, IEstimator<ITransformer> preFeaturizer = null, IProgress<RunDetail<RegressionMetrics>> progressHandler = null)
{
var columnInformation = new ColumnInformation()
{
LabelColumnName = labelColumnName,
SamplingKeyColumnName = samplingKeyColumn,
};
return Execute(trainData, columnInformation, preFeaturizer, progressHandler);
}
public override CrossValidationExperimentResult<RegressionMetrics> Execute(IDataView trainData, uint numberOfCVFolds, ColumnInformation columnInformation = null, IEstimator<ITransformer> preFeaturizer = null, IProgress<CrossValidationRunDetail<RegressionMetrics>> progressHandler = null)
{
var label = columnInformation.LabelColumnName;
_experiment.SetRegressionMetric(Settings.OptimizingMetric, label);
_experiment.SetDataset(trainData, (int)numberOfCVFolds);
_pipeline = CreateRegressionPipeline(trainData, columnInformation, preFeaturizer);
_experiment.SetPipeline(_pipeline);
// set monitor
TrialResultMonitor<RegressionMetrics> monitor = null;
_experiment.SetMonitor((provider) =>
{
var channel = provider.GetService<IChannel>();
var pipeline = provider.GetService<SweepablePipeline>();
monitor = new TrialResultMonitor<RegressionMetrics>(channel, pipeline);
monitor.OnTrialCompleted += (o, e) =>
{
var detail = BestResultUtil.ToCrossValidationRunDetail(Context, e, _pipeline);
progressHandler?.Report(detail);
};
return monitor;
});
_experiment.SetTrialRunner<RegressionTrialRunner>();
_experiment.Run();
var runDetails = monitor.RunDetails.Select(e => BestResultUtil.ToCrossValidationRunDetail(Context, e, _pipeline));
var bestResult = BestResultUtil.ToCrossValidationRunDetail(Context, monitor.BestRun, _pipeline);
var result = new CrossValidationExperimentResult<RegressionMetrics>(runDetails, bestResult);
return result;
}
public override CrossValidationExperimentResult<RegressionMetrics> Execute(IDataView trainData, uint numberOfCVFolds, string labelColumnName = "Label", string samplingKeyColumn = null, IEstimator<ITransformer> preFeaturizer = null, IProgress<CrossValidationRunDetail<RegressionMetrics>> progressHandler = null)
{
var columnInformation = new ColumnInformation()
{
LabelColumnName = labelColumnName,
SamplingKeyColumnName = samplingKeyColumn,
};
return Execute(trainData, numberOfCVFolds, columnInformation, preFeaturizer, progressHandler);
}
private SweepablePipeline CreateRegressionPipeline(IDataView trainData, ColumnInformation columnInformation, IEstimator<ITransformer> preFeaturizer = null)
{
var useSdca = Settings.Trainers.Contains(RegressionTrainer.StochasticDualCoordinateAscent);
var uselbfgs = Settings.Trainers.Contains(RegressionTrainer.LbfgsPoissonRegression);
var useLgbm = Settings.Trainers.Contains(RegressionTrainer.LightGbm);
var useFastForest = Settings.Trainers.Contains(RegressionTrainer.FastForest);
var useFastTree = Settings.Trainers.Contains(RegressionTrainer.FastTree) || Settings.Trainers.Contains(RegressionTrainer.FastTreeTweedie);
SweepablePipeline pipeline = new SweepablePipeline();
if (preFeaturizer != null)
{
pipeline = pipeline.Append(preFeaturizer);
}
var label = columnInformation.LabelColumnName;
pipeline = pipeline.Append(Context.Auto().Featurizer(trainData, columnInformation, Features));
pipeline = pipeline.Append(Context.Auto().Regression(label, useSdca: useSdca, useFastTree: useFastTree, useLgbm: useLgbm, useLbfgsPoissonRegression: uselbfgs, useFastForest: useFastForest, featureColumnName: Features));
return pipeline;
}
private protected override CrossValidationRunDetail<RegressionMetrics> GetBestCrossValRun(IEnumerable<CrossValidationRunDetail<RegressionMetrics>> results)
{
return BestResultUtil.GetBestRun(results, MetricsAgent, OptimizingMetricInfo.IsMaximizing);
}
private protected override RunDetail<RegressionMetrics> GetBestRun(IEnumerable<RunDetail<RegressionMetrics>> results)
{
return BestResultUtil.GetBestRun(results, MetricsAgent, OptimizingMetricInfo.IsMaximizing);
}
}
/// <summary>
/// Extension methods that operate over regression experiment run results.
/// </summary>
public static class RegressionExperimentResultExtensions
{
/// <summary>
/// Select the best run from an enumeration of experiment runs.
/// </summary>
/// <param name="results">Enumeration of AutoML experiment run results.</param>
/// <param name="metric">Metric to consider when selecting the best run.</param>
/// <returns>The best experiment run.</returns>
public static RunDetail<RegressionMetrics> Best(this IEnumerable<RunDetail<RegressionMetrics>> results, RegressionMetric metric = RegressionMetric.RSquared)
{
var metricsAgent = new RegressionMetricsAgent(null, metric);
var isMetricMaximizing = new OptimizingMetricInfo(metric).IsMaximizing;
return BestResultUtil.GetBestRun(results, metricsAgent, isMetricMaximizing);
}
/// <summary>
/// Select the best run from an enumeration of experiment cross validation runs.
/// </summary>
/// <param name="results">Enumeration of AutoML experiment cross validation run results.</param>
/// <param name="metric">Metric to consider when selecting the best run.</param>
/// <returns>The best experiment run.</returns>
public static CrossValidationRunDetail<RegressionMetrics> Best(this IEnumerable<CrossValidationRunDetail<RegressionMetrics>> results, RegressionMetric metric = RegressionMetric.RSquared)
{
var metricsAgent = new RegressionMetricsAgent(null, metric);
var isMetricMaximizing = new OptimizingMetricInfo(metric).IsMaximizing;
return BestResultUtil.GetBestRun(results, metricsAgent, isMetricMaximizing);
}
}
internal class RegressionTrialRunner : ITrialRunner
{
private MLContext _context;
private readonly IDatasetManager _datasetManager;
private readonly IMetricManager _metricManager;
private readonly IMLContextManager _contextManager;
private readonly SweepablePipeline _pipeline;
private readonly Random _rnd;
public RegressionTrialRunner(IMLContextManager contextManager, IDatasetManager datasetManager, IMetricManager metricManager, SweepablePipeline pipeline, AutoMLExperiment.AutoMLExperimentSettings settings)
{
_context = contextManager.CreateMLContext();
_contextManager = contextManager;
_datasetManager = datasetManager;
_metricManager = metricManager;
_pipeline = pipeline;
_rnd = settings.Seed.HasValue ? new Random(settings.Seed.Value) : new Random();
}
public Task<TrialResult> RunAsync(TrialSettings settings, CancellationToken ct)
{
try
{
using (var ctRegistration = ct.Register(() =>
{
_context?.CancelExecution();
}))
{
if (_metricManager is RegressionMetricManager metricManager)
{
var parameter = settings.Parameter[AutoMLExperiment.PipelineSearchspaceName];
var pipeline = _pipeline.BuildFromOption(_context, parameter);
var refitContext = _contextManager.CreateMLContext();
var refitPipeline = _pipeline.BuildFromOption(refitContext, parameter);
if (_datasetManager is ICrossValidateDatasetManager datasetManager)
{
var stopWatch = new Stopwatch();
stopWatch.Start();
var fold = datasetManager.Fold;
var metrics = _context.Regression.CrossValidate(datasetManager.Dataset, pipeline, fold, metricManager.LabelColumn);
// now we just randomly pick a model, but a better way is to provide option to pick a model which score is the cloest to average or the best.
var res = metrics[_rnd.Next(fold)];
var model = res.Model;
var metric = GetMetric(metricManager.Metric, res.Metrics);
var loss = metricManager.IsMaximize ? -metric : metric;
stopWatch.Stop();
return Task.FromResult(new TrialResult<RegressionMetrics>()
{
Loss = loss,
Metric = metric,
Model = model,
TrialSettings = settings,
DurationInMilliseconds = stopWatch.ElapsedMilliseconds,
Metrics = res.Metrics,
CrossValidationMetrics = metrics,
Pipeline = refitPipeline,
} as TrialResult);
}
if (_datasetManager is ITrainValidateDatasetManager trainTestDatasetManager)
{
var stopWatch = new Stopwatch();
stopWatch.Start();
var model = pipeline.Fit(trainTestDatasetManager.LoadTrainDataset(_context, settings));
var eval = model.Transform(trainTestDatasetManager.LoadValidateDataset(_context, settings));
var metrics = _context.Regression.Evaluate(eval, metricManager.LabelColumn, scoreColumnName: metricManager.ScoreColumn);
var metric = GetMetric(metricManager.Metric, metrics);
var loss = metricManager.IsMaximize ? -metric : metric;
stopWatch.Stop();
return Task.FromResult(new TrialResult<RegressionMetrics>()
{
Loss = loss,
Metric = metric,
Metrics = metrics,
Model = model,
TrialSettings = settings,
DurationInMilliseconds = stopWatch.ElapsedMilliseconds,
Pipeline = refitPipeline,
} as TrialResult);
}
}
throw new ArgumentException($"The runner metric manager is of type {_metricManager.GetType()} which expected to be of type {typeof(ITrainValidateDatasetManager)} or {typeof(ICrossValidateDatasetManager)}");
}
}
catch (Exception ex) when (ct.IsCancellationRequested)
{
throw new OperationCanceledException(ex.Message, ex.InnerException);
}
catch (Exception)
{
throw;
}
}
public void Dispose()
{
_context.CancelExecution();
_context = null;
}
private double GetMetric(RegressionMetric metric, RegressionMetrics metrics)
{
return metric switch
{
RegressionMetric.RootMeanSquaredError => metrics.RootMeanSquaredError,
RegressionMetric.RSquared => metrics.RSquared,
RegressionMetric.MeanSquaredError => metrics.MeanSquaredError,
RegressionMetric.MeanAbsoluteError => metrics.MeanAbsoluteError,
_ => throw new NotImplementedException($"{metric} is not supported!"),
};
}
}
}
|