|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System.IO;
using BenchmarkDotNet.Attributes;
using Microsoft.ML.Data;
using Microsoft.ML.PerformanceTests.Harness;
using Microsoft.ML.TestFrameworkCommon;
using Microsoft.ML.Transforms;
namespace Microsoft.ML.PerformanceTests
{
[CIBenchmark]
public class RffTransformTrain : BenchmarkBase
{
private string _dataPathDigits;
[GlobalSetup]
public void SetupTrainingSpeedTests()
{
_dataPathDigits = GetBenchmarkDataPathAndEnsureData(TestDatasets.Digits.trainFilename, TestDatasets.Digits.path);
if (!File.Exists(_dataPathDigits))
throw new FileNotFoundException(string.Format(Errors.DatasetNotFound, _dataPathDigits));
}
[Benchmark]
public void CV_Multiclass_Digits_RffTransform_OVAAveragedPerceptron()
{
var mlContext = new MLContext(1);
var loader = mlContext.Data.CreateTextLoader(new TextLoader.Options
{
Columns = new[]
{
new TextLoader.Column("Label", DataKind.Single, 64),
new TextLoader.Column("Features", DataKind.Single, new[] {new TextLoader.Range() {Min = 0, Max = 63}})
},
HasHeader = false,
Separators = new[] { ',' }
});
var data = loader.Load(_dataPathDigits);
var pipeline = mlContext.Transforms.ApproximatedKernelMap("FeaturesRFF", "Features")
.AppendCacheCheckpoint(mlContext)
.Append(mlContext.Transforms.Concatenate("Features", "FeaturesRFF"))
.Append(new ValueToKeyMappingEstimator(mlContext, "Label"))
.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(mlContext.BinaryClassification.Trainers.AveragedPerceptron(numberOfIterations: 10)));
var cvResults = mlContext.MulticlassClassification.CrossValidate(data, pipeline, numberOfFolds: 5);
}
}
}
|