File: Dynamic\Trainers\MulticlassClassification\PermutationFeatureImportanceLoadFromDisk.cs
Web Access
Project: src\docs\samples\Microsoft.ML.Samples\Microsoft.ML.Samples.csproj (Microsoft.ML.Samples)
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Calibrators;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;
 
namespace Samples.Dynamic.Trainers.MulticlassClassification
{
    public static class PermutationFeatureImportanceLoadFromDisk
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness.
            var mlContext = new MLContext(seed: 1);
 
            // Create sample data.
            var samples = GenerateData();
 
            // Load the sample data as an IDataView.
            var data = mlContext.Data.LoadFromEnumerable(samples);
 
            // Define a training pipeline that concatenates features into a vector,
            // normalizes them, and then trains a linear model.
            var featureColumns =
                new string[] { nameof(Data.Feature1), nameof(Data.Feature2) };
 
            var pipeline = mlContext.Transforms
                .Concatenate("Features", featureColumns)
                .Append(mlContext.Transforms.Conversion.MapValueToKey("Label"))
                .Append(mlContext.Transforms.NormalizeMinMax("Features"))
                .Append(mlContext.MulticlassClassification.Trainers
                .SdcaMaximumEntropy());
 
            // Fit the pipeline to the data and save the model
            var model0 = pipeline.Fit(data);
            var modelPath = "./model0.zip";
            mlContext.Model.Save(model0, data.Schema, modelPath);
 
            // Load the model
            var model = mlContext.Model.Load(modelPath, out var schema);
 
            // Transform the dataset.
            var transformedData = model.Transform(data);
 
            // Extract the predictor.
            var linearPredictor = (model as TransformerChain<ITransformer>).LastTransformer as MulticlassPredictionTransformer<MaximumEntropyModelParameters>;
 
            // Compute the permutation metrics for the linear model using the
            // normalized data.
            var permutationMetrics = mlContext.MulticlassClassification
                .PermutationFeatureImportance(linearPredictor, transformedData,
                permutationCount: 30);
 
            // Now let's look at which features are most important to the model
            // overall. Get the feature indices sorted by their impact on
            // micro-accuracy.
            var sortedIndices = permutationMetrics
                .Select((metrics, index) => new { index, metrics.MicroAccuracy })
                .OrderByDescending(feature => Math.Abs(feature.MicroAccuracy.Mean))
                .Select(feature => feature.index);
 
            Console.WriteLine("Feature\tChange in MicroAccuracy\t95% Confidence in "
                + "the Mean Change in MicroAccuracy");
 
            var microAccuracy = permutationMetrics.Select(x => x.MicroAccuracy)
                .ToArray();
 
            foreach (int i in sortedIndices)
            {
                Console.WriteLine("{0}\t{1:G4}\t{2:G4}",
                    featureColumns[i],
                    microAccuracy[i].Mean,
                    1.96 * microAccuracy[i].StandardError);
            }
 
            // Expected output:
            //Feature     Change in MicroAccuracy  95% Confidence in the Mean Change in MicroAccuracy
            //Feature2        -0.1396                 0.0008036
            //Feature1        -0.05421                0.0006154
 
        }
 
        private class Data
        {
            public float Label { get; set; }
 
            public float Feature1 { get; set; }
 
            public float Feature2 { get; set; }
        }
 
        /// <summary>
        /// Generate an enumerable of Data objects, creating the label as a simple
        /// linear combination of the features.
        /// </summary>
        /// <param name="nExamples">The number of examples.</param>
        /// <param name="bias">The bias, or offset, in the calculation of the
        /// label.</param>
        /// <param name="weight1">The weight to multiply the first feature with to
        /// compute the label.</param>
        /// <param name="weight2">The weight to multiply the second feature with to
        /// compute the label.</param>
        /// <param name="seed">The seed for generating feature values and label
        /// noise.</param>
        /// <returns>An enumerable of Data objects.</returns>
        private static IEnumerable<Data> GenerateData(int nExamples = 10000,
            double bias = 0, double weight1 = 1, double weight2 = 2, int seed = 1)
        {
            var rng = new Random(seed);
            var max = bias + 4.5 * weight1 + 4.5 * weight2 + 0.5;
            for (int i = 0; i < nExamples; i++)
            {
                var data = new Data
                {
                    Feature1 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                    Feature2 = (float)(rng.Next(10) * (rng.NextDouble() - 0.5)),
                };
 
                // Create a noisy label.
                var value = (float)
                    (bias + weight1 * data.Feature1 + weight2 * data.Feature2 +
                    rng.NextDouble() - 0.5);
 
                if (value < max / 3)
                    data.Label = 0;
                else if (value < 2 * max / 3)
                    data.Label = 1;
                else
                    data.Label = 2;
                yield return data;
            }
        }
    }
}