54 references to AsDouble
System.Numerics.Tensors (46)
System\Numerics\Tensors\netcore\TensorPrimitives.Cbrt.cs (1)
55return ExpOperator<double>.Invoke(LogOperator<double>.Invoke(x.AsDouble()) / Vector256.Create(3d)).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Ceiling.cs (1)
53return Vector256.Ceiling(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.ConvertToInteger.cs (2)
67if (typeof(TTo) == typeof(long)) return Vector256.ConvertToInt64(x.AsDouble()).As<long, TTo>(); 68if (typeof(TTo) == typeof(ulong)) return Vector256.ConvertToUInt64(x.AsDouble()).As<ulong, TTo>();
System\Numerics\Tensors\netcore\TensorPrimitives.ConvertToIntegerNative.cs (2)
67if (typeof(TTo) == typeof(long)) return Vector256.ConvertToInt64Native(x.AsDouble()).As<long, TTo>(); 68if (typeof(TTo) == typeof(ulong)) return Vector256.ConvertToUInt64Native(x.AsDouble()).As<ulong, TTo>();
System\Numerics\Tensors\netcore\TensorPrimitives.Cos.cs (1)
98return Vector256.Cos(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Cosh.cs (1)
107Vector256<double> x = t.AsDouble();
System\Numerics\Tensors\netcore\TensorPrimitives.CosPi.cs (1)
80return ApplyScalar<CosPiOperator<double>>(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.DegreesToRadians.cs (1)
54return Vector256.DegreesToRadians(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Exp.cs (1)
72return Vector256.Exp(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Floor.cs (1)
53return Vector256.Floor(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.FusedMultiplyAdd.cs (3)
159return Vector256.FusedMultiplyAdd(x.AsDouble(), y.AsDouble(), z.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Hypot.cs (2)
58return Vector256.Hypot(x.AsDouble(), y.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.IndexOfMax.cs (3)
492if (typeof(T) == typeof(double)) return Avx2.BlendVariable(left.AsDouble(), right.AsDouble(), (~mask).AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Lerp.cs (3)
102return Vector256.Lerp(x.AsDouble(), y.AsDouble(), amount.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Log.cs (1)
114return Vector256.Log(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Log2.cs (1)
74return Vector256.Log2(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.MultiplyAddEstimate.cs (3)
162return Vector256.MultiplyAddEstimate(x.AsDouble(), y.AsDouble(), z.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Pow.cs (2)
88return ExpOperator<double>.Invoke(y.AsDouble() * LogOperator<double>.Invoke(x.AsDouble())).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.RadiansToDegrees.cs (1)
54return Vector256.RadiansToDegrees(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Reciprocal.cs (2)
130if (typeof(T) == typeof(double)) return Avx512F.VL.Reciprocal14(x.AsDouble()).As<double, T>(); 196if (typeof(T) == typeof(double)) return Avx512F.VL.ReciprocalSqrt14(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Remainder.cs (1)
83typeof(T) == typeof(double) ? x - (TruncateOperator<double>.Invoke((x / y).AsDouble()).As<double, T>() * y) :
System\Numerics\Tensors\netcore\TensorPrimitives.RootN.cs (1)
57return ExpOperator<double>.Invoke(LogOperator<double>.Invoke(x.AsDouble()) / Vector256.Create((double)_n)).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Round.cs (3)
203return Vector256.Round(x.AsDouble()).As<double, T>(); 276return TruncateOperator<double>.Invoke(x.AsDouble() + CopySignOperator<double>.Invoke(Vector256.Create(0.49999999999999994), x.AsDouble())).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Sin.cs (1)
88return Vector256.Sin(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Sinh.cs (1)
95Vector256<double> x = t.AsDouble();
System\Numerics\Tensors\netcore\TensorPrimitives.SinPi.cs (1)
80return ApplyScalar<SinPiOperator<double>>(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Tan.cs (3)
83return TanOperatorDouble.Invoke(x.AsDouble()).As<double, T>(); 342Vector256<double> result = (poly.AsUInt64() ^ (x.AsUInt64() & Vector256.Create(~SignMask))).AsDouble(); 343return Vector256.ConditionalSelect(Vector256.Equals(odd, Vector256<ulong>.Zero).AsDouble(),
System\Numerics\Tensors\netcore\TensorPrimitives.Tanh.cs (1)
98Vector256<double> x = t.AsDouble();
System\Numerics\Tensors\netcore\TensorPrimitives.Truncate.cs (1)
74return Vector256.Truncate(x.AsDouble()).As<double, T>();
System.Private.CoreLib (8)
src\libraries\System.Private.CoreLib\src\System\Runtime\Intrinsics\Vector256.cs (8)
427Vector256<double> result = Avx.Subtract(upperBits.AsDouble(), Create(0x45300000_80100000).AsDouble()); // Compute in double precision: (upper - (2^84 + 2^63 + 2^52)) + lower 428return Avx.Add(result, lowerBits.AsDouble()); 460Vector256<double> result = Avx.Subtract(upperBits.AsDouble(), Create(0x45300000_00100000UL).AsDouble()); // Compute in double precision: (upper - (2^84 + 2^52)) + lower 461return Avx.Add(result, lowerBits.AsDouble()); 1967return VectorMath.IsEvenIntegerDouble<Vector256<double>, Vector256<ulong>>(vector.AsDouble()).As<double, T>(); 2094return VectorMath.IsOddIntegerDouble<Vector256<double>, Vector256<ulong>>(vector.AsDouble()).As<double, T>();