54 references to AsDouble
System.Numerics.Tensors (46)
System\Numerics\Tensors\netcore\TensorPrimitives.Cbrt.cs (1)
55
return ExpOperator<double>.Invoke(LogOperator<double>.Invoke(x.
AsDouble
()) / Vector256.Create(3d)).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Ceiling.cs (1)
53
return Vector256.Ceiling(x.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.ConvertToInteger.cs (2)
67
if (typeof(TTo) == typeof(long)) return Vector256.ConvertToInt64(x.
AsDouble
()).As<long, TTo>();
68
if (typeof(TTo) == typeof(ulong)) return Vector256.ConvertToUInt64(x.
AsDouble
()).As<ulong, TTo>();
System\Numerics\Tensors\netcore\TensorPrimitives.ConvertToIntegerNative.cs (2)
67
if (typeof(TTo) == typeof(long)) return Vector256.ConvertToInt64Native(x.
AsDouble
()).As<long, TTo>();
68
if (typeof(TTo) == typeof(ulong)) return Vector256.ConvertToUInt64Native(x.
AsDouble
()).As<ulong, TTo>();
System\Numerics\Tensors\netcore\TensorPrimitives.Cos.cs (1)
98
return Vector256.Cos(x.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Cosh.cs (1)
107
Vector256<double> x = t.
AsDouble
();
System\Numerics\Tensors\netcore\TensorPrimitives.CosPi.cs (1)
80
return ApplyScalar<CosPiOperator<double>>(x.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.DegreesToRadians.cs (1)
54
return Vector256.DegreesToRadians(x.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Exp.cs (1)
72
return Vector256.Exp(x.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Floor.cs (1)
53
return Vector256.Floor(x.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.FusedMultiplyAdd.cs (3)
159
return Vector256.FusedMultiplyAdd(x.
AsDouble
(), y.
AsDouble
(), z.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Hypot.cs (2)
58
return Vector256.Hypot(x.
AsDouble
(), y.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.IndexOfMax.cs (3)
492
if (typeof(T) == typeof(double)) return Avx2.BlendVariable(left.
AsDouble
(), right.
AsDouble
(), (~mask).
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Lerp.cs (3)
102
return Vector256.Lerp(x.
AsDouble
(), y.
AsDouble
(), amount.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Log.cs (1)
114
return Vector256.Log(x.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Log2.cs (1)
74
return Vector256.Log2(x.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.MultiplyAddEstimate.cs (3)
162
return Vector256.MultiplyAddEstimate(x.
AsDouble
(), y.
AsDouble
(), z.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Pow.cs (2)
88
return ExpOperator<double>.Invoke(y.
AsDouble
() * LogOperator<double>.Invoke(x.
AsDouble
())).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.RadiansToDegrees.cs (1)
54
return Vector256.RadiansToDegrees(x.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Reciprocal.cs (2)
130
if (typeof(T) == typeof(double)) return Avx512F.VL.Reciprocal14(x.
AsDouble
()).As<double, T>();
196
if (typeof(T) == typeof(double)) return Avx512F.VL.ReciprocalSqrt14(x.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Remainder.cs (1)
83
typeof(T) == typeof(double) ? x - (TruncateOperator<double>.Invoke((x / y).
AsDouble
()).As<double, T>() * y) :
System\Numerics\Tensors\netcore\TensorPrimitives.RootN.cs (1)
57
return ExpOperator<double>.Invoke(LogOperator<double>.Invoke(x.
AsDouble
()) / Vector256.Create((double)_n)).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Round.cs (3)
203
return Vector256.Round(x.
AsDouble
()).As<double, T>();
276
return TruncateOperator<double>.Invoke(x.
AsDouble
() + CopySignOperator<double>.Invoke(Vector256.Create(0.49999999999999994), x.
AsDouble
())).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Sin.cs (1)
88
return Vector256.Sin(x.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Sinh.cs (1)
95
Vector256<double> x = t.
AsDouble
();
System\Numerics\Tensors\netcore\TensorPrimitives.SinPi.cs (1)
80
return ApplyScalar<SinPiOperator<double>>(x.
AsDouble
()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Tan.cs (3)
83
return TanOperatorDouble.Invoke(x.
AsDouble
()).As<double, T>();
342
Vector256<double> result = (poly.AsUInt64() ^ (x.AsUInt64() & Vector256.Create(~SignMask))).
AsDouble
();
343
return Vector256.ConditionalSelect(Vector256.Equals(odd, Vector256<ulong>.Zero).
AsDouble
(),
System\Numerics\Tensors\netcore\TensorPrimitives.Tanh.cs (1)
98
Vector256<double> x = t.
AsDouble
();
System\Numerics\Tensors\netcore\TensorPrimitives.Truncate.cs (1)
74
return Vector256.Truncate(x.
AsDouble
()).As<double, T>();
System.Private.CoreLib (8)
src\libraries\System.Private.CoreLib\src\System\Runtime\Intrinsics\Vector256.cs (8)
427
Vector256<double> result = Avx.Subtract(upperBits.
AsDouble
(), Create(0x45300000_80100000).
AsDouble
()); // Compute in double precision: (upper - (2^84 + 2^63 + 2^52)) + lower
428
return Avx.Add(result, lowerBits.
AsDouble
());
460
Vector256<double> result = Avx.Subtract(upperBits.
AsDouble
(), Create(0x45300000_00100000UL).
AsDouble
()); // Compute in double precision: (upper - (2^84 + 2^52)) + lower
461
return Avx.Add(result, lowerBits.
AsDouble
());
1967
return VectorMath.IsEvenIntegerDouble<Vector256<double>, Vector256<ulong>>(vector.
AsDouble
()).As<double, T>();
2094
return VectorMath.IsOddIntegerDouble<Vector256<double>, Vector256<ulong>>(vector.
AsDouble
()).As<double, T>();