|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
using System.Diagnostics;
using System.Runtime.Intrinsics;
namespace System.Numerics.Tensors
{
public static partial class TensorPrimitives
{
/// <summary>Computes the element-wise sine of the value in the specified tensor that has been multiplied by Pi.</summary>
/// <param name="x">The tensor, represented as a span.</param>
/// <param name="destination">The destination tensor, represented as a span.</param>
/// <exception cref="ArgumentException">Destination is too short.</exception>
/// <exception cref="ArgumentException"><paramref name="x"/> and <paramref name="destination"/> reference overlapping memory locations and do not begin at the same location.</exception>
/// <remarks>
/// <para>
/// This method effectively computes <c><paramref name="destination" />[i] = <typeparamref name="T"/>.SinPi(<paramref name="x" />[i])</c>.
/// </para>
/// <para>
/// The angles in x must be in radians. Use <see cref="M:System.Single.DegreesToRadians(System.Single)"/> or multiply by <typeparamref name="T"/>.Pi/180 to convert degrees to radians.
/// </para>
/// <para>
/// This method may call into the underlying C runtime or employ instructions specific to the current architecture. Exact results may differ between different
/// operating systems or architectures.
/// </para>
/// </remarks>
public static void SinPi<T>(ReadOnlySpan<T> x, Span<T> destination)
where T : ITrigonometricFunctions<T> =>
InvokeSpanIntoSpan<T, SinPiOperator<T>>(x, destination);
/// <summary>T.SinPi(x)</summary>
private readonly struct SinPiOperator<T> : IUnaryOperator<T, T>
where T : ITrigonometricFunctions<T>
{
public static bool Vectorizable => (typeof(T) == typeof(float))
|| (typeof(T) == typeof(double));
public static T Invoke(T x) => T.SinPi(x);
public static Vector128<T> Invoke(Vector128<T> x)
{
Vector128<T> xpi = x * Vector128.Create(T.Pi);
if (typeof(T) == typeof(float))
{
if (Vector128.GreaterThanAny(xpi.AsUInt32() & Vector128.Create(SinOperatorSingle.SignMask), Vector128.Create(SinOperatorSingle.MaxVectorizedValue)))
{
return ApplyScalar<SinPiOperator<float>>(x.AsSingle()).As<float, T>();
}
}
else
{
Debug.Assert(typeof(T) == typeof(double));
if (Vector128.GreaterThanAny(xpi.AsUInt64() & Vector128.Create(SinOperatorDouble.SignMask), Vector128.Create(SinOperatorDouble.MaxVectorizedValue)))
{
return ApplyScalar<SinPiOperator<double>>(x.AsDouble()).As<double, T>();
}
}
return SinOperator<T>.Invoke(xpi);
}
public static Vector256<T> Invoke(Vector256<T> x)
{
Vector256<T> xpi = x * Vector256.Create(T.Pi);
if (typeof(T) == typeof(float))
{
if (Vector256.GreaterThanAny(xpi.AsUInt32() & Vector256.Create(SinOperatorSingle.SignMask), Vector256.Create(SinOperatorSingle.MaxVectorizedValue)))
{
return ApplyScalar<SinPiOperator<float>>(x.AsSingle()).As<float, T>();
}
}
else
{
Debug.Assert(typeof(T) == typeof(double));
if (Vector256.GreaterThanAny(xpi.AsUInt64() & Vector256.Create(SinOperatorDouble.SignMask), Vector256.Create(SinOperatorDouble.MaxVectorizedValue)))
{
return ApplyScalar<SinPiOperator<double>>(x.AsDouble()).As<double, T>();
}
}
return SinOperator<T>.Invoke(xpi);
}
public static Vector512<T> Invoke(Vector512<T> x)
{
Vector512<T> xpi = x * Vector512.Create(T.Pi);
if (typeof(T) == typeof(float))
{
if (Vector512.GreaterThanAny(xpi.AsUInt32() & Vector512.Create(SinOperatorSingle.SignMask), Vector512.Create(SinOperatorSingle.MaxVectorizedValue)))
{
return ApplyScalar<SinPiOperator<float>>(x.AsSingle()).As<float, T>();
}
}
else
{
Debug.Assert(typeof(T) == typeof(double));
if (Vector512.GreaterThanAny(xpi.AsUInt64() & Vector512.Create(SinOperatorDouble.SignMask), Vector512.Create(SinOperatorDouble.MaxVectorizedValue)))
{
return ApplyScalar<SinPiOperator<double>>(x.AsDouble()).As<double, T>();
}
}
return SinOperator<T>.Invoke(xpi);
}
}
}
}
|