File: System\Numerics\Tensors\netcore\TensorPrimitives.Cosh.cs
Web Access
Project: src\src\libraries\System.Numerics.Tensors\src\System.Numerics.Tensors.csproj (System.Numerics.Tensors)
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
 
using System.Diagnostics;
using System.Runtime.Intrinsics;
 
namespace System.Numerics.Tensors
{
    public static partial class TensorPrimitives
    {
        /// <summary>Computes the element-wise hyperbolic cosine of each radian angle in the specified tensor.</summary>
        /// <param name="x">The tensor, represented as a span.</param>
        /// <param name="destination">The destination tensor, represented as a span.</param>
        /// <exception cref="ArgumentException">Destination is too short.</exception>
        /// <exception cref="ArgumentException"><paramref name="x"/> and <paramref name="destination"/> reference overlapping memory locations and do not begin at the same location.</exception>
        /// <remarks>
        /// <para>
        /// This method effectively computes <c><paramref name="destination" />[i] = <typeparamref name="T"/>.Cosh(<paramref name="x" />[i])</c>.
        /// </para>
        /// <para>
        /// If a value is equal to <see cref="IFloatingPointIeee754{TSelf}.NegativeInfinity"/> or <see cref="IFloatingPointIeee754{TSelf}.PositiveInfinity"/>, the result stored into the corresponding destination location is set to <see cref="IFloatingPointIeee754{TSelf}.PositiveInfinity"/>.
        /// If a value is equal to <see cref="IFloatingPointIeee754{TSelf}.NaN"/>, the result stored into the corresponding destination location is also NaN.
        /// </para>
        /// <para>
        /// The angles in x must be in radians. Use <see cref="M:System.Single.DegreesToRadians(System.Single)"/> or multiply by <typeparamref name="T"/>.Pi/180 to convert degrees to radians.
        /// </para>
        /// <para>
        /// This method may call into the underlying C runtime or employ instructions specific to the current architecture. Exact results may differ between different
        /// operating systems or architectures.
        /// </para>
        /// </remarks>
        public static void Cosh<T>(ReadOnlySpan<T> x, Span<T> destination)
            where T : IHyperbolicFunctions<T> =>
            InvokeSpanIntoSpan<T, CoshOperator<T>>(x, destination);
 
        /// <summary>T.Cosh(x)</summary>
        internal readonly struct CoshOperator<T> : IUnaryOperator<T, T>
            where T : IHyperbolicFunctions<T>
        {
            // This code is based on `vrs4_coshf` from amd/aocl-libm-ose
            // Copyright (C) 2008-2022 Advanced Micro Devices, Inc. All rights reserved.
            //
            // Licensed under the BSD 3-Clause "New" or "Revised" License
            // See THIRD-PARTY-NOTICES.TXT for the full license text
 
            // Spec:
            //   coshf(|x| > 89.415985107421875) = Infinity
            //   coshf(Infinity)  = infinity
            //   coshf(-Infinity) = infinity
            //
            // cosh(x) = (exp(x) + exp(-x))/2
            // cosh(-x) = +cosh(x)
            //
            // checks for special cases
            // if ( asint(x) > infinity) return x with overflow exception and
            // return x.
            // if x is NaN then raise invalid FP operation exception and return x.
            //
            // coshf = v/2 * exp(x - log(v)) where v = 0x1.0000e8p-1
 
            private const float Single_LOGV = 0.693161f;
            private const float Single_HALFV = 1.0000138f;
            private const float Single_INVV2 = 0.24999309f;
 
            private const double Double_LOGV = 0.6931471805599453;
            private const double Double_HALFV = 1.0;
            private const double Double_INVV2 = 0.25;
 
            public static bool Vectorizable => typeof(T) == typeof(float) || typeof(T) == typeof(double);
 
            public static T Invoke(T x) => T.Cosh(x);
 
            public static Vector128<T> Invoke(Vector128<T> t)
            {
                if (typeof(T) == typeof(float))
                {
                    Vector128<float> x = t.AsSingle();
 
                    Vector128<float> y = Vector128.Abs(x);
                    Vector128<float> z = ExpOperator<float>.Invoke(y - Vector128.Create((float)Single_LOGV));
                    return (Vector128.Create((float)Single_HALFV) * (z + (Vector128.Create((float)Single_INVV2) / z))).As<float, T>();
                }
                else
                {
                    Debug.Assert(typeof(T) == typeof(double));
                    Vector128<double> x = t.AsDouble();
 
                    Vector128<double> y = Vector128.Abs(x);
                    Vector128<double> z = ExpOperator<double>.Invoke(y - Vector128.Create(Double_LOGV));
                    return (Vector128.Create(Double_HALFV) * (z + (Vector128.Create(Double_INVV2) / z))).As<double, T>();
                }
            }
 
            public static Vector256<T> Invoke(Vector256<T> t)
            {
                if (typeof(T) == typeof(float))
                {
                    Vector256<float> x = t.AsSingle();
 
                    Vector256<float> y = Vector256.Abs(x);
                    Vector256<float> z = ExpOperator<float>.Invoke(y - Vector256.Create((float)Single_LOGV));
                    return (Vector256.Create((float)Single_HALFV) * (z + (Vector256.Create((float)Single_INVV2) / z))).As<float, T>();
                }
                else
                {
                    Debug.Assert(typeof(T) == typeof(double));
                    Vector256<double> x = t.AsDouble();
 
                    Vector256<double> y = Vector256.Abs(x);
                    Vector256<double> z = ExpOperator<double>.Invoke(y - Vector256.Create(Double_LOGV));
                    return (Vector256.Create(Double_HALFV) * (z + (Vector256.Create(Double_INVV2) / z))).As<double, T>();
                }
            }
 
            public static Vector512<T> Invoke(Vector512<T> t)
            {
                if (typeof(T) == typeof(float))
                {
                    Vector512<float> x = t.AsSingle();
 
                    Vector512<float> y = Vector512.Abs(x);
                    Vector512<float> z = ExpOperator<float>.Invoke(y - Vector512.Create((float)Single_LOGV));
                    return (Vector512.Create((float)Single_HALFV) * (z + (Vector512.Create((float)Single_INVV2) / z))).As<float, T>();
                }
                else
                {
                    Debug.Assert(typeof(T) == typeof(double));
                    Vector512<double> x = t.AsDouble();
 
                    Vector512<double> y = Vector512.Abs(x);
                    Vector512<double> z = ExpOperator<double>.Invoke(y - Vector512.Create(Double_LOGV));
                    return (Vector512.Create(Double_HALFV) * (z + (Vector512.Create(Double_INVV2) / z))).As<double, T>();
                }
            }
        }
    }
}