|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
using System.Runtime.Intrinsics;
namespace System.Numerics.Tensors
{
public static partial class TensorPrimitives
{
/// <summary>Computes the element-wise hyperbolic tangent of each radian angle in the specified tensor.</summary>
/// <param name="x">The tensor, represented as a span.</param>
/// <param name="destination">The destination tensor, represented as a span.</param>
/// <exception cref="ArgumentException">Destination is too short.</exception>
/// <exception cref="ArgumentException"><paramref name="x"/> and <paramref name="destination"/> reference overlapping memory locations and do not begin at the same location.</exception>
/// <remarks>
/// <para>
/// This method effectively computes <c><paramref name="destination" />[i] = <typeparamref name="T"/>.Tanh(<paramref name="x" />[i])</c>.
/// </para>
/// <para>
/// If a value is equal to <see cref="IFloatingPointIeee754{TSelf}.NegativeInfinity"/>, the corresponding destination location is set to -1.
/// If a value is equal to <see cref="IFloatingPointIeee754{TSelf}.PositiveInfinity"/>, the corresponding destination location is set to 1.
/// If a value is equal to <see cref="IFloatingPointIeee754{TSelf}.NaN"/>, the corresponding destination location is set to NaN.
/// </para>
/// <para>
/// The angles in x must be in radians. Use <see cref="M:System.Single.DegreesToRadians(System.Single)"/> or multiply by <typeparamref name="T"/>.Pi / 180 to convert degrees to radians.
/// </para>
/// <para>
/// This method may call into the underlying C runtime or employ instructions specific to the current architecture. Exact results may differ between different
/// operating systems or architectures.
/// </para>
/// </remarks>
public static void Tanh<T>(ReadOnlySpan<T> x, Span<T> destination)
where T : IHyperbolicFunctions<T> =>
InvokeSpanIntoSpan<T, TanhOperator<T>>(x, destination);
/// <summary>T.Tanh(x)</summary>
internal readonly struct TanhOperator<T> : IUnaryOperator<T, T>
where T : IHyperbolicFunctions<T>
{
// This code is based on `vrs4_tanhf` from amd/aocl-libm-ose
// Copyright (C) 2008-2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Licensed under the BSD 3-Clause "New" or "Revised" License
// See THIRD-PARTY-NOTICES.TXT for the full license text
// To compute vrs4_tanhf(v_f32x4_t x)
// Let y = |x|
// If 0 <= y < 0x1.154246p3
// Let z = e^(-2.0 * y) - 1 -(1)
//
// Using (1), tanhf(y) can be calculated as,
// tanhf(y) = -z / (z + 2.0)
//
// For other cases, call scalar tanhf()
//
// If x < 0, then we use the identity
// tanhf(-x) = -tanhf(x)
public static bool Vectorizable => typeof(T) == typeof(float) || typeof(T) == typeof(double);
public static T Invoke(T x) => T.Tanh(x);
public static Vector128<T> Invoke(Vector128<T> t)
{
if (typeof(T) == typeof(float))
{
Vector128<float> x = t.AsSingle();
Vector128<float> y = Vector128.Abs(x);
Vector128<float> z = ExpM1Operator<float>.Invoke(Vector128.Create(-2f) * y);
Vector128<uint> sign = x.AsUInt32() & Vector128.Create(~(uint)int.MaxValue);
return (sign ^ (-z / (z + Vector128.Create(2f))).AsUInt32()).As<uint, T>();
}
else
{
Vector128<double> x = t.AsDouble();
Vector128<double> y = Vector128.Abs(x);
Vector128<double> z = ExpM1Operator<double>.Invoke(Vector128.Create(-2d) * y);
Vector128<ulong> sign = x.AsUInt64() & Vector128.Create(~(ulong)long.MaxValue);
return (sign ^ (-z / (z + Vector128.Create(2d))).AsUInt64()).As<ulong, T>();
}
}
public static Vector256<T> Invoke(Vector256<T> t)
{
if (typeof(T) == typeof(float))
{
Vector256<float> x = t.AsSingle();
Vector256<float> y = Vector256.Abs(x);
Vector256<float> z = ExpM1Operator<float>.Invoke(Vector256.Create(-2f) * y);
Vector256<uint> sign = x.AsUInt32() & Vector256.Create(~(uint)int.MaxValue);
return (sign ^ (-z / (z + Vector256.Create(2f))).AsUInt32()).As<uint, T>();
}
else
{
Vector256<double> x = t.AsDouble();
Vector256<double> y = Vector256.Abs(x);
Vector256<double> z = ExpM1Operator<double>.Invoke(Vector256.Create(-2d) * y);
Vector256<ulong> sign = x.AsUInt64() & Vector256.Create(~(ulong)long.MaxValue);
return (sign ^ (-z / (z + Vector256.Create(2d))).AsUInt64()).As<ulong, T>();
}
}
public static Vector512<T> Invoke(Vector512<T> t)
{
if (typeof(T) == typeof(float))
{
Vector512<float> x = t.AsSingle();
Vector512<float> y = Vector512.Abs(x);
Vector512<float> z = ExpM1Operator<float>.Invoke(Vector512.Create(-2f) * y);
Vector512<uint> sign = x.AsUInt32() & Vector512.Create(~(uint)int.MaxValue);
return (sign ^ (-z / (z + Vector512.Create(2f))).AsUInt32()).As<uint, T>();
}
else
{
Vector512<double> x = t.AsDouble();
Vector512<double> y = Vector512.Abs(x);
Vector512<double> z = ExpM1Operator<double>.Invoke(Vector512.Create(-2d) * y);
Vector512<ulong> sign = x.AsUInt64() & Vector512.Create(~(ulong)long.MaxValue);
return (sign ^ (-z / (z + Vector512.Create(2d))).AsUInt64()).As<ulong, T>();
}
}
}
}
}
|