58 references to AsDouble
System.Numerics.Tensors (49)
System\Numerics\Tensors\netcore\TensorPrimitives.Cbrt.cs (1)
42return ExpOperator<double>.Invoke(LogOperator<double>.Invoke(x.AsDouble()) / Vector128.Create(3d)).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Ceiling.cs (1)
47return Vector128.Ceiling(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.ConvertToInteger.cs (2)
49Vector128.ConvertToInt64(x.AsDouble()).As<long, TTo>() : 50Vector128.ConvertToUInt64(x.AsDouble()).As<ulong, TTo>();
System\Numerics\Tensors\netcore\TensorPrimitives.ConvertToIntegerNative.cs (2)
49Vector128.ConvertToInt64Native(x.AsDouble()).As<long, TTo>() : 50Vector128.ConvertToUInt64Native(x.AsDouble()).As<ulong, TTo>();
System\Numerics\Tensors\netcore\TensorPrimitives.Cos.cs (1)
81return Vector128.Cos(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Cosh.cs (1)
93Vector128<double> x = t.AsDouble();
System\Numerics\Tensors\netcore\TensorPrimitives.CosPi.cs (1)
64return ApplyScalar<CosPiOperator<double>>(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.DegreesToRadians.cs (1)
44return Vector128.DegreesToRadians(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Exp.cs (1)
54return Vector128.Exp(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Floor.cs (1)
47return Vector128.Floor(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.FusedMultiplyAdd.cs (3)
129return Vector128.FusedMultiplyAdd(x.AsDouble(), y.AsDouble(), z.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Hypot.cs (2)
48return Vector128.Hypot(x.AsDouble(), y.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.IndexOfMax.cs (3)
475if (typeof(T) == typeof(double)) return Sse41.BlendVariable(left.AsDouble(), right.AsDouble(), (~mask).AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Lerp.cs (3)
108return Vector128.Lerp(x.AsDouble(), y.AsDouble(), amount.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Log.cs (1)
110return Vector128.Log(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Log2.cs (1)
56return Vector128.Log2(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.MultiplyAddEstimate.cs (3)
152return Vector128.MultiplyAddEstimate(x.AsDouble(), y.AsDouble(), z.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Pow.cs (2)
75return ExpOperator<double>.Invoke(y.AsDouble() * LogOperator<double>.Invoke(x.AsDouble())).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.RadiansToDegrees.cs (1)
37return Vector128.RadiansToDegrees(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Reciprocal.cs (4)
130if (typeof(T) == typeof(double)) return Avx512F.VL.Reciprocal14(x.AsDouble()).As<double, T>(); 146if (typeof(T) == typeof(double)) return AdvSimd.Arm64.ReciprocalEstimate(x.AsDouble()).As<double, T>(); 196if (typeof(T) == typeof(double)) return Avx512F.VL.ReciprocalSqrt14(x.AsDouble()).As<double, T>(); 212if (typeof(T) == typeof(double)) return AdvSimd.Arm64.ReciprocalSquareRootEstimate(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Remainder.cs (1)
99typeof(T) == typeof(double) ? x - (TruncateOperator<double>.Invoke((x / y).AsDouble()).As<double, T>() * y) :
System\Numerics\Tensors\netcore\TensorPrimitives.RootN.cs (1)
44return ExpOperator<double>.Invoke(LogOperator<double>.Invoke(x.AsDouble()) / Vector128.Create((double)_n)).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Round.cs (4)
196return Vector128.Round(x.AsDouble()).As<double, T>(); 271return AdvSimd.Arm64.RoundAwayFromZero(x.AsDouble()).As<double, T>(); 275return TruncateOperator<double>.Invoke(x.AsDouble() + CopySignOperator<double>.Invoke(Vector128.Create(0.49999999999999994), x.AsDouble())).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Sin.cs (1)
70return Vector128.Sin(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Sinh.cs (1)
77Vector128<double> x = t.AsDouble();
System\Numerics\Tensors\netcore\TensorPrimitives.SinPi.cs (1)
64return ApplyScalar<SinPiOperator<double>>(x.AsDouble()).As<double, T>();
System\Numerics\Tensors\netcore\TensorPrimitives.Tan.cs (3)
77return TanOperatorDouble.Invoke(x.AsDouble()).As<double, T>(); 302Vector128<double> result = (poly.AsUInt64() ^ (x.AsUInt64() & Vector128.Create(~SignMask))).AsDouble(); 303return Vector128.ConditionalSelect(Vector128.Equals(odd, Vector128<ulong>.Zero).AsDouble(),
System\Numerics\Tensors\netcore\TensorPrimitives.Tanh.cs (1)
83Vector128<double> x = t.AsDouble();
System\Numerics\Tensors\netcore\TensorPrimitives.Truncate.cs (1)
45return Vector128.Truncate(x.AsDouble()).As<double, T>();
System.Private.CoreLib (9)
src\libraries\System.Private.CoreLib\src\System\Runtime\Intrinsics\Vector128.cs (9)
401Vector128<double> result = Sse2.Subtract(upperBits.AsDouble(), Create(0x45300000_80100000).AsDouble()); // Compute in double precision: (upper - (2^84 + 2^63 + 2^52)) + lower 402return Sse2.Add(result, lowerBits.AsDouble()); 442Vector128<double> result = Sse2.Subtract(upperBits.AsDouble(), Create(0x45300000_00100000UL).AsDouble()); // Compute in double precision: (upper - (2^84 + 2^52)) + lower 443return Sse2.Add(result, lowerBits.AsDouble()); 1882return VectorMath.IsEvenIntegerDouble<Vector128<double>, Vector128<ulong>>(vector.AsDouble()).As<double, T>(); 2009return VectorMath.IsOddIntegerDouble<Vector128<double>, Vector128<ulong>>(vector.AsDouble()).As<double, T>(); 3856Unsafe.WriteUnaligned(ref address, source.AsDouble().ToScalar());