|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Diagnostics;
using System.Diagnostics.CodeAnalysis;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CSharp.Emit;
using Microsoft.CodeAnalysis.CSharp.Syntax;
using Microsoft.CodeAnalysis.PooledObjects;
using Microsoft.CodeAnalysis.Text;
using Roslyn.Utilities;
using ReferenceEqualityComparer = Roslyn.Utilities.ReferenceEqualityComparer;
namespace Microsoft.CodeAnalysis.CSharp.Symbols
{
/// <summary>
/// Represents a named type symbol whose members are declared in source.
/// </summary>
internal abstract partial class SourceMemberContainerTypeSymbol : NamedTypeSymbol
{
// The flags type is used to compact many different bits of information efficiently.
private struct Flags
{
// We current pack everything into one 32-bit int; layout is given below.
//
// | p|ss|vvv|zzzz|f|d|yy|wwwwww|
//
// w = special type. 6 bits.
// y = IsManagedType. 2 bits.
// d = FieldDefinitionsNoted. 1 bit.
// f = FlattenedMembersIsSorted. 1 bit.
// z = TypeKind. 4 bits.
// v = NullableContext. 3 bits.
// s = DeclaredRequiredMembers. 2 bits
// p = HasPrimaryConstructor. 1 bit.
private int _flags;
private const int SpecialTypeOffset = 0;
private const int SpecialTypeSize = 6;
private const int ManagedKindOffset = SpecialTypeOffset + SpecialTypeSize;
private const int ManagedKindSize = 2;
private const int FieldDefinitionsNotedOffset = ManagedKindOffset + ManagedKindSize;
private const int FieldDefinitionsNotedSize = 1;
private const int FlattenedMembersIsSortedOffset = FieldDefinitionsNotedOffset + FieldDefinitionsNotedSize;
private const int FlattenedMembersIsSortedSize = 1;
private const int TypeKindOffset = FlattenedMembersIsSortedOffset + FlattenedMembersIsSortedSize;
private const int TypeKindSize = 4;
private const int NullableContextOffset = TypeKindOffset + TypeKindSize;
private const int NullableContextSize = 3;
private const int HasDeclaredRequiredMembersOffset = NullableContextOffset + NullableContextSize;
private const int HasDeclaredRequiredMembersSize = 2;
private const int HasPrimaryConstructorOffset = HasDeclaredRequiredMembersOffset + HasDeclaredRequiredMembersSize;
// private const int HasPrimaryConstructorSize = 1;
private const int SpecialTypeMask = (1 << SpecialTypeSize) - 1;
private const int ManagedKindMask = (1 << ManagedKindSize) - 1;
private const int TypeKindMask = (1 << TypeKindSize) - 1;
private const int NullableContextMask = (1 << NullableContextSize) - 1;
private const int FieldDefinitionsNotedBit = 1 << FieldDefinitionsNotedOffset;
private const int FlattenedMembersIsSortedBit = 1 << FlattenedMembersIsSortedOffset;
private const int HasDeclaredMembersBit = (1 << HasDeclaredRequiredMembersOffset);
private const int HasDeclaredMembersBitSet = (1 << (HasDeclaredRequiredMembersOffset + 1));
private const int HasPrimaryConstructorBit = 1 << HasPrimaryConstructorOffset;
public ExtendedSpecialType ExtendedSpecialType
{
get { return (ExtendedSpecialType)((_flags >> SpecialTypeOffset) & SpecialTypeMask); }
}
public ManagedKind ManagedKind
{
get { return (ManagedKind)((_flags >> ManagedKindOffset) & ManagedKindMask); }
}
public bool FieldDefinitionsNoted
{
get { return (_flags & FieldDefinitionsNotedBit) != 0; }
}
// True if "lazyMembersFlattened" is sorted.
public bool FlattenedMembersIsSorted
{
get { return (_flags & FlattenedMembersIsSortedBit) != 0; }
}
public TypeKind TypeKind
{
get { return (TypeKind)((_flags >> TypeKindOffset) & TypeKindMask); }
}
#if DEBUG
static Flags()
{
// Verify masks are sufficient for values.
_ = new int[SpecialTypeMask - (int)InternalSpecialType.NextAvailable + 1];
Debug.Assert(EnumUtilities.ContainsAllValues<SpecialType>(SpecialTypeMask));
Debug.Assert(EnumUtilities.ContainsAllValues<InternalSpecialType>(SpecialTypeMask)); //This assert might false fail in the future, we don't really need to be able to represent NextAvailable
Debug.Assert(EnumUtilities.ContainsAllValues<NullableContextKind>(NullableContextMask));
}
#endif
public Flags(ExtendedSpecialType specialType, TypeKind typeKind, bool hasPrimaryConstructor)
{
int specialTypeInt = ((int)specialType & SpecialTypeMask) << SpecialTypeOffset;
int typeKindInt = ((int)typeKind & TypeKindMask) << TypeKindOffset;
int hasPrimaryConstructorInt = hasPrimaryConstructor ? HasPrimaryConstructorBit : 0;
_flags = specialTypeInt | typeKindInt | hasPrimaryConstructorInt;
}
public void SetFieldDefinitionsNoted()
{
ThreadSafeFlagOperations.Set(ref _flags, FieldDefinitionsNotedBit);
}
public void SetFlattenedMembersIsSorted()
{
ThreadSafeFlagOperations.Set(ref _flags, (FlattenedMembersIsSortedBit));
}
private static bool BitsAreUnsetOrSame(int bits, int mask)
{
return (bits & mask) == 0 || (bits & mask) == mask;
}
public void SetManagedKind(ManagedKind managedKind)
{
int bitsToSet = ((int)managedKind & ManagedKindMask) << ManagedKindOffset;
Debug.Assert(BitsAreUnsetOrSame(_flags, bitsToSet));
ThreadSafeFlagOperations.Set(ref _flags, bitsToSet);
}
public bool TryGetNullableContext(out byte? value)
{
return ((NullableContextKind)((_flags >> NullableContextOffset) & NullableContextMask)).TryGetByte(out value);
}
public bool SetNullableContext(byte? value)
{
return ThreadSafeFlagOperations.Set(ref _flags, (((int)value.ToNullableContextFlags() & NullableContextMask) << NullableContextOffset));
}
public bool TryGetHasDeclaredRequiredMembers(out bool value)
{
if ((_flags & (HasDeclaredMembersBitSet)) != 0)
{
value = (_flags & HasDeclaredMembersBit) != 0;
return true;
}
else
{
value = false;
return false;
}
}
public bool SetHasDeclaredRequiredMembers(bool value)
{
return ThreadSafeFlagOperations.Set(ref _flags, HasDeclaredMembersBitSet | (value ? HasDeclaredMembersBit : 0));
}
public readonly bool HasPrimaryConstructor => (_flags & HasPrimaryConstructorBit) != 0;
}
private static readonly ObjectPool<PooledDictionary<Symbol, Symbol>> s_duplicateRecordMemberSignatureDictionary =
PooledDictionary<Symbol, Symbol>.CreatePool(MemberSignatureComparer.RecordAPISignatureComparer);
protected SymbolCompletionState state;
private Flags _flags;
private ImmutableArray<DiagnosticInfo> _managedKindUseSiteDiagnostics;
private ImmutableArray<AssemblySymbol> _managedKindUseSiteDependencies;
private readonly DeclarationModifiers _declModifiers;
private readonly NamespaceOrTypeSymbol _containingSymbol;
protected readonly MergedTypeDeclaration declaration;
// The entry point symbol (resulting from top-level statements) is needed to construct non-type members because
// it contributes to their binders, so we have to compute it first.
// The value changes from "default" to "real value". The transition from "default" can only happen once.
private ImmutableArray<SynthesizedSimpleProgramEntryPointSymbol> _lazySimpleProgramEntryPoints;
// To compute explicitly declared members, binding must be limited (to avoid race conditions where binder cache captures symbols that aren't part of the final set)
// The value changes from "uninitialized" to "real value" to null. The transition from "uninitialized" can only happen once.
private DeclaredMembersAndInitializers? _lazyDeclaredMembersAndInitializers = DeclaredMembersAndInitializers.UninitializedSentinel;
private MembersAndInitializers? _lazyMembersAndInitializers;
private Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>>? _lazyMembersDictionary;
private Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>>? _lazyEarlyAttributeDecodingMembersDictionary;
private static readonly Dictionary<ReadOnlyMemory<char>, ImmutableArray<NamedTypeSymbol>> s_emptyTypeMembers =
new Dictionary<ReadOnlyMemory<char>, ImmutableArray<NamedTypeSymbol>>(EmptyReadOnlyMemoryOfCharComparer.Instance);
private Dictionary<ReadOnlyMemory<char>, ImmutableArray<NamedTypeSymbol>>? _lazyTypeMembers;
private ImmutableArray<Symbol> _lazyMembersFlattened;
private SynthesizedExplicitImplementations? _lazySynthesizedExplicitImplementations;
private int _lazyKnownCircularStruct;
private LexicalSortKey _lazyLexicalSortKey = LexicalSortKey.NotInitialized;
private ThreeState _lazyContainsExtensionMethods;
private ThreeState _lazyAnyMemberHasAttributes;
#region Construction
internal SourceMemberContainerTypeSymbol(
NamespaceOrTypeSymbol containingSymbol,
MergedTypeDeclaration declaration,
BindingDiagnosticBag diagnostics,
TupleExtraData? tupleData = null)
: base(tupleData)
{
// If we're dealing with a simple program, then we must be in the global namespace
Debug.Assert(containingSymbol is NamespaceSymbol { IsGlobalNamespace: true } || !declaration.Declarations.Any(static d => d.IsSimpleProgram));
_containingSymbol = containingSymbol;
this.declaration = declaration;
TypeKind typeKind = declaration.Kind.ToTypeKind();
var modifiers = MakeModifiers(typeKind, diagnostics);
foreach (var singleDeclaration in declaration.Declarations)
{
diagnostics.AddRange(singleDeclaration.Diagnostics);
}
int access = (int)(modifiers & DeclarationModifiers.AccessibilityMask);
if ((access & (access - 1)) != 0)
{ // more than one access modifier
if ((modifiers & DeclarationModifiers.Partial) != 0)
diagnostics.Add(ErrorCode.ERR_PartialModifierConflict, GetFirstLocation(), this);
access = access & ~(access - 1); // narrow down to one access modifier
modifiers &= ~DeclarationModifiers.AccessibilityMask; // remove them all
modifiers |= (DeclarationModifiers)access; // except the one
}
_declModifiers = modifiers;
var specialType = access == (int)DeclarationModifiers.Public
? MakeExtendedSpecialType()
: default;
_flags = new Flags(specialType, typeKind, declaration.HasPrimaryConstructor);
Debug.Assert(typeKind is TypeKind.Struct or TypeKind.Class || !HasPrimaryConstructor);
var containingType = this.ContainingType;
if (containingType?.IsSealed == true && this.DeclaredAccessibility.HasProtected())
{
diagnostics.Add(AccessCheck.GetProtectedMemberInSealedTypeError(ContainingType), GetFirstLocation(), this);
}
state.NotePartComplete(CompletionPart.TypeArguments); // type arguments need not be computed separately
}
private ExtendedSpecialType MakeExtendedSpecialType()
{
// check if this is one of the COR library types
if (ContainingSymbol.Kind == SymbolKind.Namespace &&
ContainingSymbol.ContainingAssembly.KeepLookingForDeclaredSpecialTypes)
{
//for a namespace, the emitted name is a dot-separated list of containing namespaces
var emittedName = ContainingSymbol.ToDisplayString(SymbolDisplayFormat.QualifiedNameOnlyFormat);
emittedName = MetadataHelpers.BuildQualifiedName(emittedName, MetadataName);
return SpecialTypes.GetTypeFromMetadataName(emittedName);
}
else
{
return default;
}
}
private DeclarationModifiers MakeModifiers(TypeKind typeKind, BindingDiagnosticBag diagnostics)
{
Symbol containingSymbol = this.ContainingSymbol;
DeclarationModifiers defaultAccess;
// note: we give a specific diagnostic when a file-local type is nested
var allowedModifiers = DeclarationModifiers.AccessibilityMask | DeclarationModifiers.File;
if (containingSymbol.Kind == SymbolKind.Namespace)
{
defaultAccess = DeclarationModifiers.Internal;
}
else
{
allowedModifiers |= DeclarationModifiers.New;
if (((NamedTypeSymbol)containingSymbol).IsInterface)
{
defaultAccess = DeclarationModifiers.Public;
}
else
{
defaultAccess = DeclarationModifiers.Private;
}
}
switch (typeKind)
{
case TypeKind.Class:
case TypeKind.Submission:
allowedModifiers |= DeclarationModifiers.Partial | DeclarationModifiers.Sealed | DeclarationModifiers.Abstract
| DeclarationModifiers.Unsafe;
if (!this.IsRecord)
{
allowedModifiers |= DeclarationModifiers.Static;
}
break;
case TypeKind.Struct:
allowedModifiers |= DeclarationModifiers.Partial | DeclarationModifiers.ReadOnly | DeclarationModifiers.Unsafe;
if (!this.IsRecordStruct)
{
allowedModifiers |= DeclarationModifiers.Ref;
}
break;
case TypeKind.Interface:
allowedModifiers |= DeclarationModifiers.Partial | DeclarationModifiers.Unsafe;
break;
case TypeKind.Delegate:
allowedModifiers |= DeclarationModifiers.Unsafe;
break;
}
bool modifierErrors;
var mods = MakeAndCheckTypeModifiers(
defaultAccess,
allowedModifiers,
diagnostics,
out modifierErrors);
this.CheckUnsafeModifier(mods, diagnostics);
if (!modifierErrors &&
(mods & DeclarationModifiers.Abstract) != 0 &&
(mods & (DeclarationModifiers.Sealed | DeclarationModifiers.Static)) != 0)
{
diagnostics.Add(ErrorCode.ERR_AbstractSealedStatic, GetFirstLocation(), this);
}
if (!modifierErrors &&
(mods & (DeclarationModifiers.Sealed | DeclarationModifiers.Static)) == (DeclarationModifiers.Sealed | DeclarationModifiers.Static))
{
diagnostics.Add(ErrorCode.ERR_SealedStaticClass, GetFirstLocation(), this);
}
switch (typeKind)
{
case TypeKind.Interface:
mods |= DeclarationModifiers.Abstract;
break;
case TypeKind.Struct:
case TypeKind.Enum:
mods |= DeclarationModifiers.Sealed;
break;
case TypeKind.Delegate:
mods |= DeclarationModifiers.Sealed;
break;
}
return mods;
}
private DeclarationModifiers MakeAndCheckTypeModifiers(
DeclarationModifiers defaultAccess,
DeclarationModifiers allowedModifiers,
BindingDiagnosticBag diagnostics,
out bool modifierErrors)
{
modifierErrors = false;
var result = DeclarationModifiers.Unset;
var partCount = declaration.Declarations.Length;
var missingPartial = false;
for (var i = 0; i < partCount; i++)
{
var decl = declaration.Declarations[i];
var mods = decl.Modifiers;
if (partCount > 1 && (mods & DeclarationModifiers.Partial) == 0)
{
missingPartial = true;
}
if (!modifierErrors)
{
mods = ModifierUtils.CheckModifiers(
isForTypeDeclaration: true, isForInterfaceMember: false,
mods, allowedModifiers, declaration.Declarations[i].NameLocation, diagnostics,
modifierTokens: null, modifierErrors: out modifierErrors);
// It is an error for the same modifier to appear multiple times.
if (!modifierErrors)
{
modifierErrors = ModifierUtils.CheckAccessibility(mods, this, isExplicitInterfaceImplementation: false, diagnostics, this.GetFirstLocation());
}
}
if (result == DeclarationModifiers.Unset)
{
result = mods;
}
else
{
result |= mods;
}
}
if ((result & DeclarationModifiers.AccessibilityMask) == 0)
{
result |= defaultAccess;
}
else if ((result & DeclarationModifiers.File) != 0)
{
diagnostics.Add(ErrorCode.ERR_FileTypeNoExplicitAccessibility, GetFirstLocation(), this);
}
if (missingPartial)
{
if ((result & DeclarationModifiers.Partial) == 0)
{
// duplicate definitions
switch (this.ContainingSymbol.Kind)
{
case SymbolKind.Namespace:
for (var i = 1; i < partCount; i++)
{
// note: a declaration with the 'file' modifier will only be grouped with declarations in the same file.
diagnostics.Add((result & DeclarationModifiers.File) != 0
? ErrorCode.ERR_FileLocalDuplicateNameInNS
: ErrorCode.ERR_DuplicateNameInNS, declaration.Declarations[i].NameLocation, this.Name, this.ContainingSymbol);
modifierErrors = true;
}
break;
case SymbolKind.NamedType:
for (var i = 1; i < partCount; i++)
{
if (ContainingType!.Locations.Length == 1 || ContainingType.IsPartial())
diagnostics.Add(ErrorCode.ERR_DuplicateNameInClass, declaration.Declarations[i].NameLocation, this.ContainingSymbol, this.Name);
modifierErrors = true;
}
break;
}
}
else
{
for (var i = 0; i < partCount; i++)
{
var singleDeclaration = declaration.Declarations[i];
var mods = singleDeclaration.Modifiers;
if ((mods & DeclarationModifiers.Partial) == 0)
{
diagnostics.Add(ErrorCode.ERR_MissingPartial, singleDeclaration.NameLocation, this.Name);
modifierErrors = true;
}
}
}
}
return result;
}
internal static bool IsReservedTypeName(string? name)
{
return name is { Length: > 0 } && name.All(c => c >= 'a' && c <= 'z');
}
internal static void ReportReservedTypeName(string? name, CSharpCompilation compilation, DiagnosticBag? diagnostics, Location location)
{
if (diagnostics is null)
{
return;
}
if (reportIfContextual(SyntaxKind.RecordKeyword, MessageID.IDS_FeatureRecords, ErrorCode.WRN_RecordNamedDisallowed)
|| reportIfContextual(SyntaxKind.RequiredKeyword, MessageID.IDS_FeatureRequiredMembers, ErrorCode.ERR_RequiredNameDisallowed)
|| reportIfContextual(SyntaxKind.FileKeyword, MessageID.IDS_FeatureFileTypes, ErrorCode.ERR_FileTypeNameDisallowed)
|| reportIfContextual(SyntaxKind.ScopedKeyword, MessageID.IDS_FeatureRefFields, ErrorCode.ERR_ScopedTypeNameDisallowed))
{
return;
}
else if (IsReservedTypeName(name))
{
diagnostics.Add(ErrorCode.WRN_LowerCaseTypeName, location, name);
}
bool reportIfContextual(SyntaxKind contextualKind, MessageID featureId, ErrorCode error)
{
if (name == SyntaxFacts.GetText(contextualKind) && compilation.LanguageVersion >= featureId.RequiredVersion())
{
diagnostics.Add(error, location);
return true;
}
return false;
}
}
#endregion
#region Completion
internal sealed override bool RequiresCompletion
{
get { return true; }
}
internal sealed override bool HasComplete(CompletionPart part)
{
return state.HasComplete(part);
}
protected abstract void CheckBase(BindingDiagnosticBag diagnostics);
protected abstract void CheckInterfaces(BindingDiagnosticBag diagnostics);
internal override void ForceComplete(SourceLocation? locationOpt, Predicate<Symbol>? filter, CancellationToken cancellationToken)
{
if (filter?.Invoke(this) == false)
{
return;
}
while (true)
{
// NOTE: cases that depend on GetMembers[ByName] should call RequireCompletionPartMembers.
cancellationToken.ThrowIfCancellationRequested();
var incompletePart = state.NextIncompletePart;
switch (incompletePart)
{
case CompletionPart.Attributes:
GetAttributes();
break;
case CompletionPart.StartBaseType:
case CompletionPart.FinishBaseType:
if (state.NotePartComplete(CompletionPart.StartBaseType))
{
var diagnostics = BindingDiagnosticBag.GetInstance();
CheckBase(diagnostics);
AddDeclarationDiagnostics(diagnostics);
state.NotePartComplete(CompletionPart.FinishBaseType);
diagnostics.Free();
}
break;
case CompletionPart.StartInterfaces:
case CompletionPart.FinishInterfaces:
if (state.NotePartComplete(CompletionPart.StartInterfaces))
{
var diagnostics = BindingDiagnosticBag.GetInstance();
CheckInterfaces(diagnostics);
AddDeclarationDiagnostics(diagnostics);
state.NotePartComplete(CompletionPart.FinishInterfaces);
diagnostics.Free();
}
break;
case CompletionPart.EnumUnderlyingType:
var discarded = this.EnumUnderlyingType;
break;
case CompletionPart.TypeArguments:
{
var tmp = this.TypeArgumentsWithAnnotationsNoUseSiteDiagnostics; // force type arguments
}
break;
case CompletionPart.TypeParameters:
// force type parameters
foreach (var typeParameter in this.TypeParameters)
{
// We can't filter out type parameters: if this container was requested, then all its type parameters need to be compiled
typeParameter.ForceComplete(locationOpt, filter: null, cancellationToken);
}
state.NotePartComplete(CompletionPart.TypeParameters);
break;
case CompletionPart.Members:
this.GetMembersByName();
break;
case CompletionPart.TypeMembers:
this.GetTypeMembersUnordered();
break;
case CompletionPart.SynthesizedExplicitImplementations:
this.GetSynthesizedExplicitImplementations(cancellationToken); //force interface and base class errors to be checked
break;
case CompletionPart.StartMemberChecks:
case CompletionPart.FinishMemberChecks:
if (state.NotePartComplete(CompletionPart.StartMemberChecks))
{
var diagnostics = BindingDiagnosticBag.GetInstance();
AfterMembersChecks(diagnostics);
AddDeclarationDiagnostics(diagnostics);
// We may produce a SymbolDeclaredEvent for the enclosing type before events for its contained members
DeclaringCompilation.SymbolDeclaredEvent(this);
var thisThreadCompleted = state.NotePartComplete(CompletionPart.FinishMemberChecks);
Debug.Assert(thisThreadCompleted);
diagnostics.Free();
}
break;
case CompletionPart.MembersCompletedChecksStarted:
case CompletionPart.MembersCompleted:
{
ImmutableArray<Symbol> members = this.GetMembersUnordered();
bool allCompleted = true;
if (locationOpt == null && filter == null)
{
foreach (var member in members)
{
cancellationToken.ThrowIfCancellationRequested();
member.ForceComplete(locationOpt, filter: null, cancellationToken);
}
}
else
{
foreach (var member in members)
{
ForceCompleteMemberConditionally(locationOpt, filter, member, cancellationToken);
allCompleted = allCompleted && member.HasComplete(CompletionPart.All);
}
}
if (!allCompleted)
{
// We did not complete all members so we won't have enough information for
// the PointedAtManagedTypeChecks, so just kick out now.
var allParts = CompletionPart.NamedTypeSymbolWithLocationAll;
state.SpinWaitComplete(allParts, cancellationToken);
return;
}
EnsureFieldDefinitionsNoted();
cancellationToken.ThrowIfCancellationRequested();
if (state.NotePartComplete(CompletionPart.MembersCompletedChecksStarted))
{
var diagnostics = BindingDiagnosticBag.GetInstance();
AfterMembersCompletedChecks(diagnostics);
AddDeclarationDiagnostics(diagnostics);
// We've completed all members, so we're ready for the PointedAtManagedTypeChecks;
// proceed to the next iteration.
var thisThreadCompleted = state.NotePartComplete(CompletionPart.MembersCompleted);
Debug.Assert(thisThreadCompleted);
diagnostics.Free();
}
}
break;
case CompletionPart.None:
return;
default:
// This assert will trigger if we forgot to handle any of the completion parts
Debug.Assert((incompletePart & CompletionPart.NamedTypeSymbolAll) == 0);
// any other values are completion parts intended for other kinds of symbols
state.NotePartComplete(CompletionPart.All & ~CompletionPart.NamedTypeSymbolAll);
break;
}
state.SpinWaitComplete(incompletePart, cancellationToken);
}
throw ExceptionUtilities.Unreachable();
}
internal void EnsureFieldDefinitionsNoted()
{
if (_flags.FieldDefinitionsNoted)
{
return;
}
NoteFieldDefinitions();
}
private void NoteFieldDefinitions()
{
// we must note all fields once therefore we need to lock
var membersAndInitializers = this.GetMembersAndInitializers();
lock (membersAndInitializers)
{
if (!_flags.FieldDefinitionsNoted)
{
var assembly = (SourceAssemblySymbol)ContainingAssembly;
Accessibility containerEffectiveAccessibility = EffectiveAccessibility();
foreach (var member in membersAndInitializers.NonTypeMembers)
{
FieldSymbol field;
if (!member.IsFieldOrFieldLikeEvent(out field) || field.IsConst || field.IsFixedSizeBuffer)
{
continue;
}
Accessibility fieldDeclaredAccessibility = field.DeclaredAccessibility;
if (fieldDeclaredAccessibility == Accessibility.Private)
{
// mark private fields as tentatively unassigned and unread unless we discover otherwise.
assembly.NoteFieldDefinition(field, isInternal: false, isUnread: true);
}
else if (containerEffectiveAccessibility == Accessibility.Private)
{
// mark effectively private fields as tentatively unassigned unless we discover otherwise.
assembly.NoteFieldDefinition(field, isInternal: false, isUnread: false);
}
else if (fieldDeclaredAccessibility == Accessibility.Internal || containerEffectiveAccessibility == Accessibility.Internal)
{
// mark effectively internal fields as tentatively unassigned unless we discover otherwise.
// NOTE: These fields will be reported as unassigned only if internals are not visible from this assembly.
// See property SourceAssemblySymbol.UnusedFieldWarnings.
assembly.NoteFieldDefinition(field, isInternal: true, isUnread: false);
}
}
_flags.SetFieldDefinitionsNoted();
}
}
}
#endregion
#region Containers
public sealed override NamedTypeSymbol? ContainingType
{
get
{
return _containingSymbol as NamedTypeSymbol;
}
}
public sealed override Symbol ContainingSymbol
{
get
{
return _containingSymbol;
}
}
#endregion
#region Flags Encoded Properties
public override ExtendedSpecialType ExtendedSpecialType
{
get
{
return _flags.ExtendedSpecialType;
}
}
public override TypeKind TypeKind
{
get
{
return _flags.TypeKind;
}
}
internal MergedTypeDeclaration MergedDeclaration
{
get
{
return this.declaration;
}
}
internal sealed override bool IsInterface
{
get
{
// TypeKind is computed eagerly, so this is cheap.
return this.TypeKind == TypeKind.Interface;
}
}
internal override ManagedKind GetManagedKind(ref CompoundUseSiteInfo<AssemblySymbol> useSiteInfo)
{
var managedKind = _flags.ManagedKind;
if (managedKind == ManagedKind.Unknown)
{
var managedKindUseSiteInfo = new CompoundUseSiteInfo<AssemblySymbol>(ContainingAssembly);
managedKind = base.GetManagedKind(ref managedKindUseSiteInfo);
ImmutableInterlocked.InterlockedInitialize(ref _managedKindUseSiteDiagnostics, managedKindUseSiteInfo.Diagnostics?.ToImmutableArray() ?? ImmutableArray<DiagnosticInfo>.Empty);
ImmutableInterlocked.InterlockedInitialize(ref _managedKindUseSiteDependencies, managedKindUseSiteInfo.Dependencies?.ToImmutableArray() ?? ImmutableArray<AssemblySymbol>.Empty);
_flags.SetManagedKind(managedKind);
}
if (useSiteInfo.AccumulatesDiagnostics)
{
ImmutableArray<DiagnosticInfo> useSiteDiagnostics = _managedKindUseSiteDiagnostics;
// Ensure we have the latest value from the field
useSiteDiagnostics = ImmutableInterlocked.InterlockedCompareExchange(ref _managedKindUseSiteDiagnostics, useSiteDiagnostics, useSiteDiagnostics);
Debug.Assert(!useSiteDiagnostics.IsDefault);
useSiteInfo.AddDiagnostics(useSiteDiagnostics);
}
if (useSiteInfo.AccumulatesDependencies)
{
ImmutableArray<AssemblySymbol> useSiteDependencies = _managedKindUseSiteDependencies;
// Ensure we have the latest value from the field
useSiteDependencies = ImmutableInterlocked.InterlockedCompareExchange(ref _managedKindUseSiteDependencies, useSiteDependencies, useSiteDependencies);
Debug.Assert(!useSiteDependencies.IsDefault);
useSiteInfo.AddDependencies(useSiteDependencies);
}
return managedKind;
}
public override bool IsStatic => HasFlag(DeclarationModifiers.Static);
public sealed override bool IsRefLikeType => HasFlag(DeclarationModifiers.Ref);
public override bool IsReadOnly => HasFlag(DeclarationModifiers.ReadOnly);
public override bool IsSealed => HasFlag(DeclarationModifiers.Sealed);
public override bool IsAbstract => HasFlag(DeclarationModifiers.Abstract);
internal bool IsPartial => HasFlag(DeclarationModifiers.Partial);
internal bool IsNew => HasFlag(DeclarationModifiers.New);
internal sealed override bool IsFileLocal => HasFlag(DeclarationModifiers.File);
internal bool IsUnsafe => HasFlag(DeclarationModifiers.Unsafe);
/// <summary>
/// If this type is file-local, the syntax tree in which the type is declared. Otherwise, null.
/// </summary>
private SyntaxTree? AssociatedSyntaxTree => IsFileLocal ? declaration.Declarations[0].Location.SourceTree : null;
internal sealed override FileIdentifier? AssociatedFileIdentifier
{
get
{
if (AssociatedSyntaxTree is not SyntaxTree syntaxTree)
{
return null;
}
return FileIdentifier.Create(syntaxTree, DeclaringCompilation?.Options?.SourceReferenceResolver);
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool HasFlag(DeclarationModifiers flag) => (_declModifiers & flag) != 0;
public override Accessibility DeclaredAccessibility
{
get
{
return ModifierUtils.EffectiveAccessibility(_declModifiers);
}
}
/// <summary>
/// Compute the "effective accessibility" of the current class for the purpose of warnings about unused fields.
/// </summary>
private Accessibility EffectiveAccessibility()
{
var result = DeclaredAccessibility;
if (result == Accessibility.Private) return Accessibility.Private;
for (Symbol? container = this.ContainingType; !(container is null); container = container.ContainingType)
{
switch (container.DeclaredAccessibility)
{
case Accessibility.Private:
return Accessibility.Private;
case Accessibility.Internal:
result = Accessibility.Internal;
continue;
}
}
return result;
}
#endregion
#region Syntax
public override bool IsScriptClass
{
get
{
var kind = this.declaration.Declarations[0].Kind;
return kind == DeclarationKind.Script || kind == DeclarationKind.Submission;
}
}
public override bool IsImplicitClass
{
get
{
return this.declaration.Declarations[0].Kind == DeclarationKind.ImplicitClass;
}
}
internal override bool IsRecord
{
get
{
return this.declaration.Declarations[0].Kind == DeclarationKind.Record;
}
}
internal override bool IsRecordStruct
{
get
{
return this.declaration.Declarations[0].Kind == DeclarationKind.RecordStruct;
}
}
public override bool IsImplicitlyDeclared
{
get
{
return IsImplicitClass || IsScriptClass;
}
}
public override int Arity
{
get
{
return declaration.Arity;
}
}
public override string Name
{
get
{
return declaration.Name;
}
}
internal override bool MangleName
{
get
{
return Arity > 0;
}
}
internal override LexicalSortKey GetLexicalSortKey()
{
if (!_lazyLexicalSortKey.IsInitialized)
{
_lazyLexicalSortKey.SetFrom(declaration.GetLexicalSortKey(this.DeclaringCompilation));
}
return _lazyLexicalSortKey;
}
public sealed override ImmutableArray<Location> Locations
=> ImmutableArray<Location>.CastUp(declaration.NameLocations.ToImmutable());
public override Location TryGetFirstLocation()
=> declaration.Declarations[0].NameLocation;
public ImmutableArray<SyntaxReference> SyntaxReferences
{
get
{
return this.declaration.SyntaxReferences;
}
}
public override ImmutableArray<SyntaxReference> DeclaringSyntaxReferences
{
get
{
return SyntaxReferences;
}
}
// This method behaves the same was as the base class, but avoids allocations associated with DeclaringSyntaxReferences
public override bool IsDefinedInSourceTree(SyntaxTree tree, TextSpan? definedWithinSpan, CancellationToken cancellationToken)
{
var declarations = declaration.Declarations;
if (IsImplicitlyDeclared && declarations.IsEmpty)
{
return ContainingSymbol.IsDefinedInSourceTree(tree, definedWithinSpan, cancellationToken);
}
foreach (var declaration in declarations)
{
cancellationToken.ThrowIfCancellationRequested();
var syntaxRef = declaration.SyntaxReference;
if (syntaxRef.SyntaxTree == tree &&
(!definedWithinSpan.HasValue || syntaxRef.Span.IntersectsWith(definedWithinSpan.Value)))
{
return true;
}
}
return false;
}
#endregion
#region Members
/// <summary>
/// Encapsulates information about the non-type members of a (i.e. this) type.
/// 1) For non-initializers, symbols are created and stored in a list.
/// 2) For fields and properties/indexers, the symbols are stored in (1) and their initializers are
/// stored with other initialized fields and properties from the same syntax tree with
/// the same static-ness.
/// </summary>
protected sealed class MembersAndInitializers
{
internal readonly SynthesizedPrimaryConstructor? PrimaryConstructor;
internal readonly ImmutableArray<Symbol> NonTypeMembers;
internal readonly ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> StaticInitializers;
internal readonly ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> InstanceInitializers;
internal readonly bool HaveIndexers;
internal readonly bool IsNullableEnabledForInstanceConstructorsAndFields;
internal readonly bool IsNullableEnabledForStaticConstructorsAndFields;
public MembersAndInitializers(
SynthesizedPrimaryConstructor? primaryConstructor,
ImmutableArray<Symbol> nonTypeMembers,
ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> staticInitializers,
ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> instanceInitializers,
bool haveIndexers,
bool isNullableEnabledForInstanceConstructorsAndFields,
bool isNullableEnabledForStaticConstructorsAndFields)
{
Debug.Assert(!nonTypeMembers.IsDefault);
Debug.Assert(!staticInitializers.IsDefault);
Debug.Assert(staticInitializers.All(g => !g.IsDefault));
Debug.Assert(!instanceInitializers.IsDefault);
Debug.Assert(instanceInitializers.All(g => !g.IsDefault));
Debug.Assert(!nonTypeMembers.Any(static s => s is TypeSymbol));
Debug.Assert(haveIndexers == nonTypeMembers.Any(static s => s.IsIndexer()));
this.PrimaryConstructor = primaryConstructor;
this.NonTypeMembers = nonTypeMembers;
this.StaticInitializers = staticInitializers;
this.InstanceInitializers = instanceInitializers;
this.HaveIndexers = haveIndexers;
this.IsNullableEnabledForInstanceConstructorsAndFields = isNullableEnabledForInstanceConstructorsAndFields;
this.IsNullableEnabledForStaticConstructorsAndFields = isNullableEnabledForStaticConstructorsAndFields;
}
}
internal ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> StaticInitializers
{
get { return GetMembersAndInitializers().StaticInitializers; }
}
internal ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> InstanceInitializers
{
get { return GetMembersAndInitializers().InstanceInitializers; }
}
internal int CalculateSyntaxOffsetInSynthesizedConstructor(int position, SyntaxTree tree, bool isStatic)
{
if (IsScriptClass && !isStatic)
{
int aggregateLength = 0;
foreach (var declaration in this.declaration.Declarations)
{
var syntaxRef = declaration.SyntaxReference;
if (tree == syntaxRef.SyntaxTree)
{
return aggregateLength + position;
}
aggregateLength += syntaxRef.Span.Length;
}
throw ExceptionUtilities.Unreachable();
}
int syntaxOffset;
if (TryCalculateSyntaxOffsetOfPositionInInitializer(position, tree, isStatic, ctorInitializerLength: 0, syntaxOffset: out syntaxOffset))
{
return syntaxOffset;
}
if (declaration.Declarations.Length >= 1 && position == declaration.Declarations[0].Location.SourceSpan.Start)
{
// With dynamic analysis instrumentation, the introducing declaration of a type can provide
// the syntax associated with both the analysis payload local of a synthesized constructor
// and with the constructor itself. If the synthesized constructor includes an initializer with a lambda,
// that lambda needs a closure that captures the analysis payload of the constructor,
// and the offset of the syntax for the local within the constructor is by definition zero.
return 0;
}
// an implicit constructor has no body and no initializer, so the variable has to be declared in a member initializer
throw ExceptionUtilities.Unreachable();
}
/// <summary>
/// Calculates a syntax offset of a syntax position that is contained in a property or field initializer (if it is in fact contained in one).
/// </summary>
internal bool TryCalculateSyntaxOffsetOfPositionInInitializer(int position, SyntaxTree tree, bool isStatic, int ctorInitializerLength, out int syntaxOffset)
{
Debug.Assert(ctorInitializerLength >= 0);
var membersAndInitializers = GetMembersAndInitializers();
var allInitializers = isStatic ? membersAndInitializers.StaticInitializers : membersAndInitializers.InstanceInitializers;
if (!findInitializer(allInitializers, position, tree, out FieldOrPropertyInitializer initializer, out int precedingLength))
{
syntaxOffset = 0;
return false;
}
// |<-----------distanceFromCtorBody----------->|
// [ initializer 0 ][ initializer 1 ][ initializer 2 ][ctor initializer][ctor body]
// |<--preceding init len-->| ^
// position
int initializersLength = getInitializersLength(allInitializers);
int distanceFromInitializerStart = position - initializer.Syntax.Span.Start;
int distanceFromCtorBody =
initializersLength + ctorInitializerLength -
(precedingLength + distanceFromInitializerStart);
Debug.Assert(distanceFromCtorBody > 0);
// syntax offset 0 is at the start of the ctor body:
syntaxOffset = -distanceFromCtorBody;
return true;
static bool findInitializer(ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> initializers, int position, SyntaxTree tree,
out FieldOrPropertyInitializer found, out int precedingLength)
{
precedingLength = 0;
foreach (var group in initializers)
{
if (!group.IsEmpty &&
group[0].Syntax.SyntaxTree == tree &&
position < group.Last().Syntax.Span.End)
{
// Found group of interest
var initializerIndex = IndexOfInitializerContainingPosition(group, position);
if (initializerIndex < 0)
{
break;
}
precedingLength += getPrecedingInitializersLength(group, initializerIndex);
found = group[initializerIndex];
return true;
}
precedingLength += getGroupLength(group);
}
found = default;
return false;
}
static int getGroupLength(ImmutableArray<FieldOrPropertyInitializer> initializers)
{
int length = 0;
foreach (var initializer in initializers)
{
length += getInitializerLength(initializer);
}
return length;
}
static int getPrecedingInitializersLength(ImmutableArray<FieldOrPropertyInitializer> initializers, int index)
{
int length = 0;
for (var i = 0; i < index; i++)
{
length += getInitializerLength(initializers[i]);
}
return length;
}
static int getInitializersLength(ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> initializers)
{
int length = 0;
foreach (var group in initializers)
{
length += getGroupLength(group);
}
return length;
}
static int getInitializerLength(FieldOrPropertyInitializer initializer)
{
// A constant field of type decimal needs a field initializer, so
// check if it is a metadata constant, not just a constant to exclude
// decimals. Other constants do not need field initializers.
if (initializer.FieldOpt == null || !initializer.FieldOpt.IsMetadataConstant)
{
// ignore leading and trailing trivia of the node:
return initializer.Syntax.Span.Length;
}
return 0;
}
}
private static int IndexOfInitializerContainingPosition(ImmutableArray<FieldOrPropertyInitializer> initializers, int position)
{
// Search for the start of the span (the spans are non-overlapping and sorted)
int index = initializers.BinarySearch(position, (initializer, pos) => initializer.Syntax.Span.Start.CompareTo(pos));
// Binary search returns non-negative result if the position is exactly the start of some span.
if (index >= 0)
{
return index;
}
// Otherwise, ~index is the closest span whose start is greater than the position.
// => Check if the preceding initializer span contains the position.
int precedingInitializerIndex = ~index - 1;
if (precedingInitializerIndex >= 0 && initializers[precedingInitializerIndex].Syntax.Span.Contains(position))
{
return precedingInitializerIndex;
}
return -1;
}
public override IEnumerable<string> MemberNames
{
get
{
return (IsTupleType || IsRecord || IsRecordStruct) ? GetMembers().Select(m => m.Name) : this.declaration.MemberNames;
}
}
internal override ImmutableArray<NamedTypeSymbol> GetTypeMembersUnordered()
{
return GetTypeMembersDictionary().Flatten();
}
public override ImmutableArray<NamedTypeSymbol> GetTypeMembers()
{
return GetTypeMembersDictionary().Flatten(LexicalOrderSymbolComparer.Instance);
}
public override ImmutableArray<NamedTypeSymbol> GetTypeMembers(ReadOnlyMemory<char> name)
{
ImmutableArray<NamedTypeSymbol> members;
if (GetTypeMembersDictionary().TryGetValue(name, out members))
{
return members;
}
return ImmutableArray<NamedTypeSymbol>.Empty;
}
public override ImmutableArray<NamedTypeSymbol> GetTypeMembers(ReadOnlyMemory<char> name, int arity)
{
return GetTypeMembers(name).WhereAsArray((t, arity) => t.Arity == arity, arity);
}
private Dictionary<ReadOnlyMemory<char>, ImmutableArray<NamedTypeSymbol>> GetTypeMembersDictionary()
{
if (_lazyTypeMembers == null)
{
var diagnostics = BindingDiagnosticBag.GetInstance();
if (Interlocked.CompareExchange(ref _lazyTypeMembers, MakeTypeMembers(diagnostics), null) == null)
{
AddDeclarationDiagnostics(diagnostics);
state.NotePartComplete(CompletionPart.TypeMembers);
}
diagnostics.Free();
}
return _lazyTypeMembers;
}
private Dictionary<ReadOnlyMemory<char>, ImmutableArray<NamedTypeSymbol>> MakeTypeMembers(BindingDiagnosticBag diagnostics)
{
var symbols = ArrayBuilder<NamedTypeSymbol>.GetInstance();
var conflictDict = new Dictionary<(string name, int arity, SyntaxTree? syntaxTree), SourceNamedTypeSymbol>();
try
{
// Declarations which can be merged into a single type symbol have already been merged at this phase.
// Merging behaves the same in either presence or absence of 'partial' modifiers.
// However, type declarations which can never be partial won't merge, e.g. 'enum',
// and type declarations with different kinds, e.g. 'class' and 'struct' will never merge.
// Now we want to figure out if declarations which didn't merge have name conflicts.
foreach (var childDeclaration in declaration.Children)
{
var t = new SourceNamedTypeSymbol(this, childDeclaration, diagnostics);
this.CheckMemberNameDistinctFromType(t, diagnostics);
var key = (t.Name, t.Arity, t.AssociatedSyntaxTree);
SourceNamedTypeSymbol? other;
if (conflictDict.TryGetValue(key, out other))
{
if (Locations.Length == 1 || IsPartial)
{
if (t.IsPartial && other.IsPartial)
{
diagnostics.Add(ErrorCode.ERR_PartialTypeKindConflict, t.GetFirstLocation(), t);
}
else
{
diagnostics.Add(ErrorCode.ERR_DuplicateNameInClass, t.GetFirstLocation(), this, t.Name);
}
}
}
else
{
conflictDict.Add(key, t);
}
symbols.Add(t);
}
if (IsInterface)
{
foreach (var t in symbols)
{
Binder.CheckFeatureAvailability(t.DeclaringSyntaxReferences[0].GetSyntax(), MessageID.IDS_DefaultInterfaceImplementation, diagnostics, t.GetFirstLocation());
}
}
Debug.Assert(s_emptyTypeMembers.Count == 0);
return symbols.Count > 0 ?
symbols.ToDictionary(s => s.Name.AsMemory(), ReadOnlyMemoryOfCharComparer.Instance) :
s_emptyTypeMembers;
}
finally
{
symbols.Free();
}
}
private void CheckMemberNameDistinctFromType(Symbol member, BindingDiagnosticBag diagnostics)
{
switch (this.TypeKind)
{
case TypeKind.Class:
case TypeKind.Struct:
if (member.Name == this.Name)
{
diagnostics.Add(ErrorCode.ERR_MemberNameSameAsType, member.GetFirstLocation(), this.Name);
}
break;
case TypeKind.Interface:
if (member.IsStatic)
{
goto case TypeKind.Class;
}
break;
}
}
internal override bool HasDeclaredRequiredMembers
{
get
{
if (_flags.TryGetHasDeclaredRequiredMembers(out bool hasDeclaredMembers))
{
return hasDeclaredMembers;
}
hasDeclaredMembers = declaration.Declarations.Any(static decl => decl.HasRequiredMembers);
_flags.SetHasDeclaredRequiredMembers(hasDeclaredMembers);
return hasDeclaredMembers;
}
}
internal override bool HasAsyncMethodBuilderAttribute(out TypeSymbol? builderArgument)
{
return HasAsyncMethodBuilderAttribute(this, out builderArgument);
}
/// <summary>
/// Returns true if the method has a [AsyncMethodBuilder(typeof(B))] attribute. If so it returns type B.
/// Validation of builder type B is left for elsewhere. This method returns B without validation of any kind.
/// </summary>
internal static bool HasAsyncMethodBuilderAttribute(Symbol symbol, [NotNullWhen(true)] out TypeSymbol? builderArgument)
{
Debug.Assert(symbol is not null);
// Find the AsyncMethodBuilder attribute.
foreach (var attr in symbol.GetAttributes())
{
Debug.Assert(attr is SourceAttributeData);
if (attr.IsTargetAttribute(AttributeDescription.AsyncMethodBuilderAttribute)
&& attr.CommonConstructorArguments.Length == 1
&& attr.CommonConstructorArguments[0].Kind == TypedConstantKind.Type)
{
builderArgument = (TypeSymbol)attr.CommonConstructorArguments[0].ValueInternal!;
return true;
}
}
builderArgument = null;
return false;
}
internal override ImmutableArray<Symbol> GetMembersUnordered()
{
var result = _lazyMembersFlattened;
if (result.IsDefault)
{
result = GetMembersByName().Flatten(null); // do not sort.
ImmutableInterlocked.InterlockedInitialize(ref _lazyMembersFlattened, result);
result = _lazyMembersFlattened;
}
return result.ConditionallyDeOrder();
}
public override ImmutableArray<Symbol> GetMembers()
{
if (_flags.FlattenedMembersIsSorted)
{
return _lazyMembersFlattened;
}
else
{
var allMembers = this.GetMembersUnordered();
if (allMembers.Length > 1)
{
// The array isn't sorted. Sort it and remember that we sorted it.
allMembers = allMembers.Sort(LexicalOrderSymbolComparer.Instance);
ImmutableInterlocked.InterlockedExchange(ref _lazyMembersFlattened, allMembers);
}
_flags.SetFlattenedMembersIsSorted();
return allMembers;
}
}
public sealed override ImmutableArray<Symbol> GetMembers(string name)
{
ImmutableArray<Symbol> members;
if (GetMembersByName().TryGetValue(name.AsMemory(), out members))
{
return members;
}
return ImmutableArray<Symbol>.Empty;
}
/// <remarks>
/// For source symbols, there can only be a valid clone method if this is a record, which is a
/// simple syntax check. This will need to change when we generalize cloning, but it's a good
/// heuristic for now.
/// </remarks>
internal override bool HasPossibleWellKnownCloneMethod()
=> IsRecord;
internal override ImmutableArray<Symbol> GetSimpleNonTypeMembers(string name)
{
if (_lazyMembersDictionary != null || declaration.MemberNames.Contains(name) || declaration.Kind is DeclarationKind.Record or DeclarationKind.RecordStruct)
{
return GetMembers(name);
}
return ImmutableArray<Symbol>.Empty;
}
internal override IEnumerable<FieldSymbol> GetFieldsToEmit()
{
if (this.TypeKind == TypeKind.Enum)
{
// For consistency with Dev10, emit value__ field first.
var valueField = ((SourceNamedTypeSymbol)this).EnumValueField;
RoslynDebug.Assert((object)valueField != null);
yield return valueField;
}
foreach (var m in this.GetMembers())
{
switch (m.Kind)
{
case SymbolKind.Field:
if (m is TupleErrorFieldSymbol)
{
break;
}
yield return (FieldSymbol)m;
break;
case SymbolKind.Event:
FieldSymbol? associatedField = ((EventSymbol)m).AssociatedField;
if ((object?)associatedField != null)
{
yield return associatedField;
}
break;
}
}
}
/// <summary>
/// During early attribute decoding, we consider a safe subset of all members that will not
/// cause cyclic dependencies. Get all such members for this symbol.
///
/// In particular, this method will return nested types and fields (other than auto-property
/// backing fields).
/// </summary>
internal override ImmutableArray<Symbol> GetEarlyAttributeDecodingMembers()
{
return GetEarlyAttributeDecodingMembersDictionary().Flatten();
}
/// <summary>
/// During early attribute decoding, we consider a safe subset of all members that will not
/// cause cyclic dependencies. Get all such members for this symbol that have a particular name.
///
/// In particular, this method will return nested types and fields (other than auto-property
/// backing fields).
/// </summary>
internal override ImmutableArray<Symbol> GetEarlyAttributeDecodingMembers(string name)
{
ImmutableArray<Symbol> result;
return GetEarlyAttributeDecodingMembersDictionary().TryGetValue(name.AsMemory(), out result) ? result : ImmutableArray<Symbol>.Empty;
}
private Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> GetEarlyAttributeDecodingMembersDictionary()
{
if (_lazyEarlyAttributeDecodingMembersDictionary == null)
{
if (Volatile.Read(ref _lazyMembersDictionary) is Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> result)
{
return result;
}
var membersAndInitializers = GetMembersAndInitializers(); //NOTE: separately cached
// NOTE: members were added in a single pass over the syntax, so they're already
// in lexical order.
Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> membersByName;
if (!membersAndInitializers.HaveIndexers)
{
membersByName = ToNameKeyedDictionary(membersAndInitializers.NonTypeMembers);
}
else
{
// We can't include indexer symbol yet, because we don't know
// what name it will have after attribute binding (because of
// IndexerNameAttribute).
membersByName = ToNameKeyedDictionary(membersAndInitializers.NonTypeMembers.
WhereAsArray(s => !s.IsIndexer() && (!s.IsAccessor() || ((MethodSymbol)s).AssociatedSymbol?.IsIndexer() != true)));
}
AddNestedTypesToDictionary(membersByName, GetTypeMembersDictionary());
Interlocked.CompareExchange(ref _lazyEarlyAttributeDecodingMembersDictionary, membersByName, null);
}
return _lazyEarlyAttributeDecodingMembersDictionary;
}
private static Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> ToNameKeyedDictionary(ImmutableArray<Symbol> symbols)
{
if (symbols is [var symbol])
{
return new Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>>(1, ReadOnlyMemoryOfCharComparer.Instance)
{
{ symbol.Name.AsMemory(), ImmutableArray.Create(symbol) },
};
}
if (symbols.Length == 0)
{
return new Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>>(ReadOnlyMemoryOfCharComparer.Instance);
}
// bucketize
// prevent reallocation. it may not have 'count' entries, but it won't have more.
//
// We store a mapping from keys to either a single item (very common in practice as this is used from
// callers that maps names to symbols with that name, and most names are unique), or an array builder of items.
var accumulator = s_nameToObjectPool.Allocate();
foreach (var item in symbols)
ImmutableArrayExtensions.AddToMultiValueDictionaryBuilder(accumulator, item.Name.AsMemory(), item);
var dictionary = new Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>>(accumulator.Count, ReadOnlyMemoryOfCharComparer.Instance);
// freeze
foreach (var pair in accumulator)
{
dictionary.Add(pair.Key, pair.Value is ArrayBuilder<Symbol> arrayBuilder
? arrayBuilder.ToImmutableAndFree()
: ImmutableArray.Create((Symbol)pair.Value));
}
accumulator.Free();
return dictionary;
}
// NOTE: this method should do as little work as possible
// we often need to get members just to do a lookup.
// All additional checks and diagnostics may be not
// needed yet or at all.
protected MembersAndInitializers GetMembersAndInitializers()
{
var membersAndInitializers = _lazyMembersAndInitializers;
if (membersAndInitializers != null)
{
return membersAndInitializers;
}
var diagnostics = BindingDiagnosticBag.GetInstance();
membersAndInitializers = BuildMembersAndInitializers(diagnostics);
var alreadyKnown = Interlocked.CompareExchange(ref _lazyMembersAndInitializers, membersAndInitializers, null);
if (alreadyKnown != null)
{
diagnostics.Free();
return alreadyKnown;
}
AddDeclarationDiagnostics(diagnostics);
diagnostics.Free();
_lazyDeclaredMembersAndInitializers = null;
return membersAndInitializers!;
}
/// <summary>
/// The purpose of this function is to assert that the <paramref name="member"/> symbol
/// is actually among the symbols cached by this type symbol in a way that ensures
/// that any consumer of standard APIs to get to type's members is going to get the same
/// symbol (same instance) for the member rather than an equivalent, but different instance.
/// </summary>
[Conditional("DEBUG")]
internal void AssertMemberExposure(Symbol member, bool forDiagnostics = false)
{
if (member is NamedTypeSymbol type)
{
RoslynDebug.AssertOrFailFast(forDiagnostics);
RoslynDebug.AssertOrFailFast(Volatile.Read(ref _lazyTypeMembers)?.Values.Any(types => types.Contains(t => t == (object)type)) == true);
return;
}
else if (member is TypeParameterSymbol || member is SynthesizedMethodBaseSymbol)
{
RoslynDebug.AssertOrFailFast(forDiagnostics);
return;
}
else if (member is FieldSymbol field && field.AssociatedSymbol is EventSymbol e)
{
RoslynDebug.AssertOrFailFast(forDiagnostics);
// Backing fields for field-like events are not added to the members list.
member = e;
}
var membersAndInitializers = Volatile.Read(ref _lazyMembersAndInitializers);
if (isMemberInCompleteMemberList(membersAndInitializers, member))
{
return;
}
if (membersAndInitializers is null)
{
if (member is SynthesizedSimpleProgramEntryPointSymbol)
{
RoslynDebug.AssertOrFailFast(GetSimpleProgramEntryPoints().Contains(m => m == (object)member));
return;
}
var declared = Volatile.Read(ref _lazyDeclaredMembersAndInitializers);
RoslynDebug.AssertOrFailFast(declared != DeclaredMembersAndInitializers.UninitializedSentinel);
if (declared is object)
{
if (declared.NonTypeMembers.Contains(m => m == (object)member) || declared.PrimaryConstructor == (object)member)
{
return;
}
}
else
{
// It looks like there was a race and we need to check _lazyMembersAndInitializers again
membersAndInitializers = Volatile.Read(ref _lazyMembersAndInitializers);
RoslynDebug.AssertOrFailFast(membersAndInitializers is object);
if (isMemberInCompleteMemberList(membersAndInitializers, member))
{
return;
}
}
}
RoslynDebug.AssertOrFailFast(false, "Premature symbol exposure.");
static bool isMemberInCompleteMemberList(MembersAndInitializers? membersAndInitializers, Symbol member)
{
return membersAndInitializers?.NonTypeMembers.Contains(m => m == (object)member) == true;
}
}
protected Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> GetMembersByName()
{
if (this.state.HasComplete(CompletionPart.Members))
{
return _lazyMembersDictionary!;
}
return GetMembersByNameSlow();
}
private Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> GetMembersByNameSlow()
{
if (_lazyMembersDictionary == null)
{
var diagnostics = BindingDiagnosticBag.GetInstance();
var membersDictionary = MakeAllMembers(diagnostics);
if (Interlocked.CompareExchange(ref _lazyMembersDictionary, membersDictionary, null) == null)
{
AddDeclarationDiagnostics(diagnostics);
state.NotePartComplete(CompletionPart.Members);
}
diagnostics.Free();
}
state.SpinWaitComplete(CompletionPart.Members, default(CancellationToken));
return _lazyMembersDictionary;
}
internal bool AreMembersComplete => state.HasComplete(CompletionPart.Members);
internal override IEnumerable<Symbol> GetInstanceFieldsAndEvents()
{
var membersAndInitializers = this.GetMembersAndInitializers();
IEnumerable<Symbol> result = membersAndInitializers.NonTypeMembers.Where(IsInstanceFieldOrEvent);
return result;
}
protected void AfterMembersChecks(BindingDiagnosticBag diagnostics)
{
if (IsInterface)
{
CheckInterfaceMembers(this.GetMembersAndInitializers().NonTypeMembers, diagnostics);
}
CheckMemberNamesDistinctFromType(diagnostics);
CheckMemberNameConflicts(diagnostics);
CheckRecordMemberNames(diagnostics);
CheckSpecialMemberErrors(diagnostics);
CheckTypeParameterNameConflicts(diagnostics);
CheckAccessorNameConflicts(diagnostics);
bool unused = KnownCircularStruct;
CheckSequentialOnPartialType(diagnostics);
CheckForProtectedInStaticClass(diagnostics);
CheckForUnmatchedOperators(diagnostics);
CheckForRequiredMemberAttribute(diagnostics);
if (IsScriptClass || IsSubmissionClass)
{
ReportRequiredMembers(diagnostics);
}
var location = GetFirstLocation();
var compilation = DeclaringCompilation;
if (this.IsRefLikeType)
{
compilation.EnsureIsByRefLikeAttributeExists(diagnostics, location, modifyCompilation: true);
}
if (this.IsReadOnly)
{
compilation.EnsureIsReadOnlyAttributeExists(diagnostics, location, modifyCompilation: true);
}
var baseType = BaseTypeNoUseSiteDiagnostics;
var interfaces = GetInterfacesToEmit();
if (compilation.ShouldEmitNativeIntegerAttributes())
{
// https://github.com/dotnet/roslyn/issues/30080: Report diagnostics for base type and interfaces at more specific locations.
if (hasBaseTypeOrInterface(static t => t.ContainsNativeIntegerWrapperType()))
{
compilation.EnsureNativeIntegerAttributeExists(diagnostics, location, modifyCompilation: true);
}
}
if (compilation.ShouldEmitNullableAttributes(this))
{
if (ShouldEmitNullableContextValue(out _))
{
compilation.EnsureNullableContextAttributeExists(diagnostics, location, modifyCompilation: true);
}
if (hasBaseTypeOrInterface(static t => t.NeedsNullableAttribute()))
{
compilation.EnsureNullableAttributeExists(diagnostics, location, modifyCompilation: true);
}
}
if (interfaces.Any(needsTupleElementNamesAttribute))
{
// Note: we don't need to check base type or directly implemented interfaces (which will be reported during binding)
// so the checking of all interfaces here involves some redundancy.
Binder.ReportMissingTupleElementNamesAttributesIfNeeded(compilation, location, diagnostics);
}
if (IsReservedTypeName(Name))
{
foreach (var syntaxRef in SyntaxReferences)
{
SyntaxToken? identifier = syntaxRef.GetSyntax() switch
{
BaseTypeDeclarationSyntax typeDecl => typeDecl.Identifier,
DelegateDeclarationSyntax delegateDecl => delegateDecl.Identifier,
_ => null
};
ReportReservedTypeName(identifier?.Text, this.DeclaringCompilation, diagnostics.DiagnosticBag, identifier?.GetLocation() ?? Location.None);
}
}
if (AssociatedFileIdentifier is { } fileIdentifier)
{
Debug.Assert(IsFileLocal);
// A well-behaved file-local type only has declarations in one syntax tree.
// There may be multiple syntax trees across declarations in error scenarios,
// but we're not interested in handling that for the purposes of producing this error.
var tree = declaration.Declarations[0].SyntaxReference.SyntaxTree;
if (fileIdentifier.EncoderFallbackErrorMessage is { } errorMessage)
{
Debug.Assert(fileIdentifier.FilePathChecksumOpt.IsDefault);
diagnostics.Add(ErrorCode.ERR_FilePathCannotBeConvertedToUtf8, location, this, errorMessage);
}
if ((object?)ContainingType != null)
{
diagnostics.Add(ErrorCode.ERR_FileTypeNested, location, this);
}
}
return;
bool hasBaseTypeOrInterface(Func<NamedTypeSymbol, bool> predicate)
{
return ((object)baseType != null && predicate(baseType)) ||
interfaces.Any(predicate);
}
static bool needsTupleElementNamesAttribute(TypeSymbol type)
{
if (type is null)
{
return false;
}
var resultType = type.VisitType(
predicate: (t, a, b) => !t.TupleElementNames.IsDefaultOrEmpty && !t.IsErrorType(),
arg: (object?)null);
return resultType is object;
}
}
protected virtual void AfterMembersCompletedChecks(BindingDiagnosticBag diagnostics)
{
}
private void CheckMemberNamesDistinctFromType(BindingDiagnosticBag diagnostics)
{
foreach (var member in GetMembersAndInitializers().NonTypeMembers)
{
CheckMemberNameDistinctFromType(member, diagnostics);
}
}
private void CheckRecordMemberNames(BindingDiagnosticBag diagnostics)
{
if (declaration.Kind != DeclarationKind.Record &&
declaration.Kind != DeclarationKind.RecordStruct)
{
return;
}
foreach (var member in GetMembers("Clone"))
{
diagnostics.Add(ErrorCode.ERR_CloneDisallowedInRecord, member.GetFirstLocation());
}
}
private void CheckMemberNameConflicts(BindingDiagnosticBag diagnostics)
{
Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> membersByName = GetMembersByName();
// Collisions involving indexers are handled specially.
CheckIndexerNameConflicts(diagnostics, membersByName);
// key and value will be the same object in these dictionaries.
var methodsBySignature = new Dictionary<SourceMemberMethodSymbol, SourceMemberMethodSymbol>(MemberSignatureComparer.DuplicateSourceComparer);
var conversionsAsMethods = new Dictionary<SourceMemberMethodSymbol, SourceMemberMethodSymbol>(MemberSignatureComparer.DuplicateSourceComparer);
var conversionsAsConversions = new HashSet<SourceUserDefinedConversionSymbol>(ConversionSignatureComparer.Comparer);
// SPEC: The signature of an operator must differ from the signatures of all other
// SPEC: operators declared in the same class.
// DELIBERATE SPEC VIOLATION:
// The specification does not state that a user-defined conversion reserves the names
// op_Implicit or op_Explicit, but nevertheless the native compiler does so; an attempt
// to define a field or a conflicting method with the metadata name of a user-defined
// conversion is an error. We preserve this reasonable behavior.
//
// Similarly, we treat "public static C operator +(C, C)" as colliding with
// "public static C op_Addition(C, C)". Fortunately, this behavior simply
// falls out of treating user-defined operators as ordinary methods; we do
// not need any special handling in this method.
//
// However, we must have special handling for conversions because conversions
// use a completely different rule for detecting collisions between two
// conversions: conversion signatures consist only of the source and target
// types of the conversions, and not the kind of the conversion (implicit or explicit),
// the name of the method, and so on.
//
// Therefore we must detect the following kinds of member name conflicts:
//
// 1. a method, conversion or field has the same name as a (different) field (* see note below)
// 2. a method has the same method signature as another method or conversion
// 3. a conversion has the same conversion signature as another conversion.
//
// However, we must *not* detect "a conversion has the same *method* signature
// as another conversion" because conversions are allowed to overload on
// return type but methods are not.
//
// (*) NOTE: Throughout the rest of this method I will use "field" as a shorthand for
// "non-method, non-conversion, non-type member", rather than spelling out
// "field, property or event...")
foreach (var pair in membersByName)
{
var name = pair.Key;
Symbol? lastSym = GetTypeMembers(name).FirstOrDefault();
methodsBySignature.Clear();
// Conversion collisions do not consider the name of the conversion,
// so do not clear that dictionary.
foreach (var symbol in pair.Value)
{
if (symbol.Kind == SymbolKind.NamedType ||
symbol.IsAccessor() ||
symbol.IsIndexer())
{
continue;
}
// We detect the first category of conflict by running down the list of members
// of the same name, and producing an error when we discover any of the following
// "bad transitions".
//
// * a method or conversion that comes after any field (not necessarily directly)
// * a field directly following a field
// * a field directly following a method or conversion
//
// Furthermore: we do not wish to detect collisions between nested types in
// this code; that is tested elsewhere. However, we do wish to detect a collision
// between a nested type and a field, method or conversion. Therefore we
// initialize our "bad transition" detector with a type of the given name,
// if there is one. That way we also detect the transitions of "method following
// type", and so on.
//
// The "lastSym" local below is used to detect these transitions. Its value is
// one of the following:
//
// * a nested type of the given name, or
// * the first method of the given name, or
// * the most recently processed field of the given name.
//
// If either the current symbol or the "last symbol" are not methods then
// there must be a collision:
//
// * if the current symbol is not a method and the last symbol is, then
// there is a field directly following a method of the same name
// * if the current symbol is a method and the last symbol is not, then
// there is a method directly or indirectly following a field of the same name,
// or a method of the same name as a nested type.
// * if neither are methods then either we have a field directly
// following a field of the same name, or a field and a nested type of the same name.
//
if (lastSym is object)
{
if (symbol.Kind != SymbolKind.Method || lastSym.Kind != SymbolKind.Method)
{
if (symbol.Kind != SymbolKind.Field || !symbol.IsImplicitlyDeclared)
{
// The type '{0}' already contains a definition for '{1}'
if (Locations.Length == 1 || IsPartial)
{
diagnostics.Add(ErrorCode.ERR_DuplicateNameInClass, symbol.GetFirstLocation(), this, symbol.Name);
}
}
if (lastSym.Kind == SymbolKind.Method)
{
lastSym = symbol;
}
}
}
else
{
lastSym = symbol;
}
// That takes care of the first category of conflict; we detect the
// second and third categories as follows:
var conversion = symbol as SourceUserDefinedConversionSymbol;
var method = symbol as SourceMemberMethodSymbol;
// We don't want to consider explicit interface implementations
if (conversion is { MethodKind: MethodKind.Conversion })
{
// Does this conversion collide *as a conversion* with any previously-seen
// conversion?
if (!conversionsAsConversions.Add(conversion))
{
// CS0557: Duplicate user-defined conversion in type 'C'
diagnostics.Add(ErrorCode.ERR_DuplicateConversionInClass, conversion.GetFirstLocation(), this);
}
else
{
// The other set might already contain a conversion which would collide
// *as a method* with the current conversion.
if (!conversionsAsMethods.ContainsKey(conversion))
{
conversionsAsMethods.Add(conversion, conversion);
}
}
// Does this conversion collide *as a method* with any previously-seen
// non-conversion method?
if (methodsBySignature.TryGetValue(conversion, out var previousMethod))
{
ReportMethodSignatureCollision(diagnostics, conversion, previousMethod);
}
// Do not add the conversion to the set of previously-seen methods; that set
// is only non-conversion methods.
}
else if (!(method is null))
{
// Does this method collide *as a method* with any previously-seen
// conversion?
if (conversionsAsMethods.TryGetValue(method, out var previousConversion))
{
ReportMethodSignatureCollision(diagnostics, method, previousConversion);
}
// Do not add the method to the set of previously-seen conversions.
// Does this method collide *as a method* with any previously-seen
// non-conversion method?
if (methodsBySignature.TryGetValue(method, out var previousMethod))
{
ReportMethodSignatureCollision(diagnostics, method, previousMethod);
}
else
{
// We haven't seen this method before. Make a note of it in case
// we see a colliding method later.
methodsBySignature.Add(method, method);
}
}
}
}
}
// Report a name conflict; the error is reported on the location of method1.
// UNDONE: Consider adding a secondary location pointing to the second method.
private void ReportMethodSignatureCollision(BindingDiagnosticBag diagnostics, SourceMemberMethodSymbol method1, SourceMemberMethodSymbol method2)
{
switch (method1, method2)
{
case (SourceOrdinaryMethodSymbol { IsPartialDefinition: true }, SourceOrdinaryMethodSymbol { IsPartialImplementation: true }):
case (SourceOrdinaryMethodSymbol { IsPartialImplementation: true }, SourceOrdinaryMethodSymbol { IsPartialDefinition: true }):
// these could be 2 parts of the same partial method.
// Partial methods are allowed to collide by signature.
return;
case (SynthesizedSimpleProgramEntryPointSymbol { }, SynthesizedSimpleProgramEntryPointSymbol { }):
return;
}
// If method1 is a constructor only because its return type is missing, then
// we've already produced a diagnostic for the missing return type and we suppress the
// diagnostic about duplicate signature.
if (method1.MethodKind == MethodKind.Constructor &&
((ConstructorDeclarationSyntax)method1.SyntaxRef.GetSyntax()).Identifier.ValueText != this.Name)
{
return;
}
Debug.Assert(method1.ParameterCount == method2.ParameterCount);
for (int i = 0; i < method1.ParameterCount; i++)
{
var refKind1 = method1.Parameters[i].RefKind;
var refKind2 = method2.Parameters[i].RefKind;
if (refKind1 != refKind2)
{
// '{0}' cannot define an overloaded {1} that differs only on parameter modifiers '{2}' and '{3}'
var methodKind = method1.MethodKind == MethodKind.Constructor ? MessageID.IDS_SK_CONSTRUCTOR : MessageID.IDS_SK_METHOD;
diagnostics.Add(ErrorCode.ERR_OverloadRefKind, method1.GetFirstLocation(), this, methodKind.Localize(), refKind1.ToParameterDisplayString(), refKind2.ToParameterDisplayString());
return;
}
}
// Special case: if there are two destructors, use the destructor syntax instead of "Finalize"
var methodName = (method1.MethodKind == MethodKind.Destructor && method2.MethodKind == MethodKind.Destructor) ?
"~" + this.Name :
(method1.IsConstructor() ? this.Name : method1.Name);
// Type '{1}' already defines a member called '{0}' with the same parameter types
diagnostics.Add(ErrorCode.ERR_MemberAlreadyExists, method1.GetFirstLocation(), methodName, this);
}
private void CheckIndexerNameConflicts(BindingDiagnosticBag diagnostics, Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> membersByName)
{
PooledHashSet<string>? typeParameterNames = null;
if (this.Arity > 0)
{
typeParameterNames = PooledHashSet<string>.GetInstance();
foreach (TypeParameterSymbol typeParameter in this.TypeParameters)
{
typeParameterNames.Add(typeParameter.Name);
}
}
var indexersBySignature = new Dictionary<PropertySymbol, PropertySymbol>(MemberSignatureComparer.DuplicateSourceComparer);
// Note: Can't assume that all indexers are called WellKnownMemberNames.Indexer because
// they may be explicit interface implementations.
foreach (var members in membersByName.Values)
{
string? lastIndexerName = null;
indexersBySignature.Clear();
foreach (var symbol in members)
{
if (symbol.IsIndexer())
{
PropertySymbol indexer = (PropertySymbol)symbol;
CheckIndexerSignatureCollisions(
indexer,
diagnostics,
membersByName,
indexersBySignature,
ref lastIndexerName);
// Also check for collisions with type parameters, which aren't in the member map.
// NOTE: Accessors have normal names and are handled in CheckTypeParameterNameConflicts.
if (typeParameterNames != null)
{
string indexerName = indexer.MetadataName;
if (typeParameterNames.Contains(indexerName))
{
diagnostics.Add(ErrorCode.ERR_DuplicateNameInClass, indexer.GetFirstLocation(), this, indexerName);
continue;
}
}
}
}
}
typeParameterNames?.Free();
}
private void CheckIndexerSignatureCollisions(
PropertySymbol indexer,
BindingDiagnosticBag diagnostics,
Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> membersByName,
Dictionary<PropertySymbol, PropertySymbol> indexersBySignature,
ref string? lastIndexerName)
{
if (!indexer.IsExplicitInterfaceImplementation) //explicit implementation names are not checked
{
string indexerName = indexer.MetadataName;
if (lastIndexerName != null && lastIndexerName != indexerName)
{
// NOTE: dev10 checks indexer names by comparing each to the previous.
// For example, if indexers are declared with names A, B, A, B, then there
// will be three errors - one for each time the name is different from the
// previous one. If, on the other hand, the names are A, A, B, B, then
// there will only be one error because only one indexer has a different
// name from the previous one.
diagnostics.Add(ErrorCode.ERR_InconsistentIndexerNames, indexer.GetFirstLocation());
}
lastIndexerName = indexerName;
if (Locations.Length == 1 || IsPartial)
{
#pragma warning disable CA1854 //Prefer a 'TryGetValue' call over a Dictionary indexer access guarded by a 'ContainsKey' check to avoid double lookup
if (membersByName.ContainsKey(indexerName.AsMemory()))
#pragma warning restore CA1854
{
// The name of the indexer is reserved - it can only be used by other indexers.
Debug.Assert(!membersByName[indexerName.AsMemory()].Any(SymbolExtensions.IsIndexer));
diagnostics.Add(ErrorCode.ERR_DuplicateNameInClass, indexer.GetFirstLocation(), this, indexerName);
}
}
}
if (indexersBySignature.TryGetValue(indexer, out var prevIndexerBySignature))
{
// Type '{1}' already defines a member called '{0}' with the same parameter types
// NOTE: Dev10 prints "this" as the name of the indexer.
diagnostics.Add(ErrorCode.ERR_MemberAlreadyExists, indexer.GetFirstLocation(), SyntaxFacts.GetText(SyntaxKind.ThisKeyword), this);
}
else
{
indexersBySignature[indexer] = indexer;
}
}
private void CheckSpecialMemberErrors(BindingDiagnosticBag diagnostics)
{
var conversions = this.ContainingAssembly.CorLibrary.TypeConversions;
foreach (var member in this.GetMembersUnordered())
{
member.AfterAddingTypeMembersChecks(conversions, diagnostics);
}
}
private void CheckTypeParameterNameConflicts(BindingDiagnosticBag diagnostics)
{
if (this.TypeKind == TypeKind.Delegate)
{
// Delegates do not have conflicts between their type parameter
// names and their methods; it is legal (though odd) to say
// delegate void D<Invoke>(Invoke x);
return;
}
if (Locations.Length == 1 || IsPartial)
{
foreach (var tp in TypeParameters)
{
foreach (var dup in GetMembers(tp.Name))
{
diagnostics.Add(ErrorCode.ERR_DuplicateNameInClass, dup.GetFirstLocation(), this, tp.Name);
}
}
}
}
private void CheckAccessorNameConflicts(BindingDiagnosticBag diagnostics)
{
// Report errors where property and event accessors
// conflict with other members of the same name.
foreach (Symbol symbol in this.GetMembersUnordered())
{
if (symbol.IsExplicitInterfaceImplementation())
{
// If there's a name conflict it will show up as a more specific
// interface implementation error.
continue;
}
switch (symbol.Kind)
{
case SymbolKind.Property:
{
var propertySymbol = (PropertySymbol)symbol;
this.CheckForMemberConflictWithPropertyAccessor(propertySymbol, getNotSet: true, diagnostics: diagnostics);
this.CheckForMemberConflictWithPropertyAccessor(propertySymbol, getNotSet: false, diagnostics: diagnostics);
break;
}
case SymbolKind.Event:
{
var eventSymbol = (EventSymbol)symbol;
this.CheckForMemberConflictWithEventAccessor(eventSymbol, isAdder: true, diagnostics: diagnostics);
this.CheckForMemberConflictWithEventAccessor(eventSymbol, isAdder: false, diagnostics: diagnostics);
break;
}
}
}
}
internal override bool KnownCircularStruct
{
get
{
if (_lazyKnownCircularStruct == (int)ThreeState.Unknown)
{
if (TypeKind != TypeKind.Struct)
{
Interlocked.CompareExchange(ref _lazyKnownCircularStruct, (int)ThreeState.False, (int)ThreeState.Unknown);
}
else
{
var diagnostics = BindingDiagnosticBag.GetInstance();
var value = (int)CheckStructCircularity(diagnostics).ToThreeState();
if (Interlocked.CompareExchange(ref _lazyKnownCircularStruct, value, (int)ThreeState.Unknown) == (int)ThreeState.Unknown)
{
AddDeclarationDiagnostics(diagnostics);
}
Debug.Assert(value == _lazyKnownCircularStruct);
diagnostics.Free();
}
}
return _lazyKnownCircularStruct == (int)ThreeState.True;
}
}
private bool CheckStructCircularity(BindingDiagnosticBag diagnostics)
{
Debug.Assert(TypeKind == TypeKind.Struct);
CheckFiniteFlatteningGraph(diagnostics);
return HasStructCircularity(diagnostics);
}
private bool HasStructCircularity(BindingDiagnosticBag diagnostics)
{
foreach (var valuesByName in GetMembersByName().Values)
{
foreach (var member in valuesByName)
{
FieldSymbol? field;
// Only instance fields (including field-like events) affect the outcome.
switch (member.Kind)
{
case SymbolKind.Field:
field = (FieldSymbol)member;
Debug.Assert(field.AssociatedSymbol is not EventSymbol, "Didn't expect to find a field-like event backing field in the member list.");
break;
case SymbolKind.Event:
field = ((EventSymbol)member).AssociatedField;
break;
default:
continue;
}
if (field is null || field.IsStatic)
{
continue;
}
var type = field.NonPointerType();
if (((object)type != null) &&
(type.TypeKind == TypeKind.Struct) &&
BaseTypeAnalysis.StructDependsOn((NamedTypeSymbol)type, this) &&
!type.IsPrimitiveRecursiveStruct()) // allow System.Int32 to contain a field of its own type
{
if (field is SynthesizedPrimaryConstructorParameterBackingFieldSymbol { ParameterSymbol: var parameterSymbol })
{
diagnostics.Add(ErrorCode.ERR_StructLayoutCyclePrimaryConstructorParameter, parameterSymbol.GetFirstLocation(), parameterSymbol, type);
}
else
{
// If this is a backing field, report the error on the associated property.
var symbol = field.AssociatedSymbol ?? field;
// Struct member '{0}' of type '{1}' causes a cycle in the struct layout
diagnostics.Add(ErrorCode.ERR_StructLayoutCycle, symbol.GetFirstLocation(), symbol, type);
}
return true;
}
}
}
return false;
}
private void CheckForProtectedInStaticClass(BindingDiagnosticBag diagnostics)
{
if (!IsStatic)
{
return;
}
// no protected members allowed
foreach (var valuesByName in GetMembersByName().Values)
{
foreach (var member in valuesByName)
{
if (member is TypeSymbol)
{
// Duplicate Dev10's failure to diagnose this error.
continue;
}
if (member.DeclaredAccessibility.HasProtected())
{
if (member.Kind != SymbolKind.Method || ((MethodSymbol)member).MethodKind != MethodKind.Destructor)
{
diagnostics.Add(ErrorCode.ERR_ProtectedInStatic, member.GetFirstLocation(), member);
}
}
}
}
}
private void CheckForUnmatchedOperators(BindingDiagnosticBag diagnostics)
{
// SPEC: The true and false unary operators require pairwise declaration.
// SPEC: A compile-time error occurs if a class or struct declares one
// SPEC: of these operators without also declaring the other.
//
// SPEC DEFICIENCY: The line of the specification quoted above should say
// the same thing as the lines below: that the formal parameters of the
// paired true/false operators must match exactly. You can't do
// op true(S) and op false(S?) for example.
// SPEC: Certain binary operators require pairwise declaration. For every
// SPEC: declaration of either operator of a pair, there must be a matching
// SPEC: declaration of the other operator of the pair. Two operator
// SPEC: declarations match when they have the same return type and the same
// SPEC: type for each parameter. The following operators require pairwise
// SPEC: declaration: == and !=, > and <, >= and <=.
CheckForUnmatchedOperator(diagnostics, WellKnownMemberNames.TrueOperatorName, WellKnownMemberNames.FalseOperatorName);
CheckForUnmatchedOperator(diagnostics, WellKnownMemberNames.EqualityOperatorName, WellKnownMemberNames.InequalityOperatorName);
CheckForUnmatchedOperator(diagnostics, WellKnownMemberNames.LessThanOperatorName, WellKnownMemberNames.GreaterThanOperatorName);
CheckForUnmatchedOperator(diagnostics, WellKnownMemberNames.LessThanOrEqualOperatorName, WellKnownMemberNames.GreaterThanOrEqualOperatorName);
CheckForUnmatchedOperator(diagnostics, WellKnownMemberNames.CheckedDecrementOperatorName, WellKnownMemberNames.DecrementOperatorName, symmetricCheck: false);
CheckForUnmatchedOperator(diagnostics, WellKnownMemberNames.CheckedIncrementOperatorName, WellKnownMemberNames.IncrementOperatorName, symmetricCheck: false);
CheckForUnmatchedOperator(diagnostics, WellKnownMemberNames.CheckedUnaryNegationOperatorName, WellKnownMemberNames.UnaryNegationOperatorName, symmetricCheck: false);
CheckForUnmatchedOperator(diagnostics, WellKnownMemberNames.CheckedAdditionOperatorName, WellKnownMemberNames.AdditionOperatorName, symmetricCheck: false);
CheckForUnmatchedOperator(diagnostics, WellKnownMemberNames.CheckedDivisionOperatorName, WellKnownMemberNames.DivisionOperatorName, symmetricCheck: false);
CheckForUnmatchedOperator(diagnostics, WellKnownMemberNames.CheckedMultiplyOperatorName, WellKnownMemberNames.MultiplyOperatorName, symmetricCheck: false);
CheckForUnmatchedOperator(diagnostics, WellKnownMemberNames.CheckedSubtractionOperatorName, WellKnownMemberNames.SubtractionOperatorName, symmetricCheck: false);
CheckForUnmatchedOperator(diagnostics, WellKnownMemberNames.CheckedExplicitConversionName, WellKnownMemberNames.ExplicitConversionName, symmetricCheck: false);
// We also produce a warning if == / != is overridden without also overriding
// Equals and GetHashCode, or if Equals is overridden without GetHashCode.
CheckForEqualityAndGetHashCode(diagnostics);
}
private void CheckForUnmatchedOperator(BindingDiagnosticBag diagnostics, string operatorName1, string operatorName2, bool symmetricCheck = true)
{
ImmutableArray<MethodSymbol> ops1 = this.GetOperators(operatorName1);
if (symmetricCheck)
{
var ops2 = this.GetOperators(operatorName2);
CheckForUnmatchedOperator(diagnostics, ops1, ops2, operatorName2, reportOperatorNeedsMatch);
CheckForUnmatchedOperator(diagnostics, ops2, ops1, operatorName1, reportOperatorNeedsMatch);
}
else if (!ops1.IsEmpty)
{
var ops2 = this.GetOperators(operatorName2);
CheckForUnmatchedOperator(diagnostics, ops1, ops2, operatorName2, reportCheckedOperatorNeedsMatch);
}
static void reportOperatorNeedsMatch(BindingDiagnosticBag diagnostics, string operatorName2, MethodSymbol op1)
{
// CS0216: The operator 'C.operator true(C)' requires a matching operator 'false' to also be defined
diagnostics.Add(ErrorCode.ERR_OperatorNeedsMatch, op1.GetFirstLocation(), op1,
SyntaxFacts.GetText(SyntaxFacts.GetOperatorKind(operatorName2)));
}
static void reportCheckedOperatorNeedsMatch(BindingDiagnosticBag diagnostics, string operatorName2, MethodSymbol op1)
{
diagnostics.Add(ErrorCode.ERR_CheckedOperatorNeedsMatch, op1.GetFirstLocation(), op1);
}
}
private static void CheckForUnmatchedOperator(
BindingDiagnosticBag diagnostics,
ImmutableArray<MethodSymbol> ops1,
ImmutableArray<MethodSymbol> ops2,
string operatorName2,
Action<BindingDiagnosticBag, string, MethodSymbol> reportMatchNotFoundError)
{
foreach (var op1 in ops1)
{
bool foundMatch = false;
foreach (var op2 in ops2)
{
foundMatch = DoOperatorsPair(op1, op2);
if (foundMatch)
{
break;
}
}
if (!foundMatch)
{
reportMatchNotFoundError(diagnostics, operatorName2, op1);
}
}
}
internal static bool DoOperatorsPair(MethodSymbol op1, MethodSymbol op2)
{
if (op1.ParameterCount != op2.ParameterCount)
{
return false;
}
for (int p = 0; p < op1.ParameterCount; ++p)
{
if (!op1.ParameterTypesWithAnnotations[p].Equals(op2.ParameterTypesWithAnnotations[p], TypeCompareKind.AllIgnoreOptions))
{
return false;
}
}
if (!op1.ReturnType.Equals(op2.ReturnType, TypeCompareKind.AllIgnoreOptions))
{
return false;
}
return true;
}
private void CheckForEqualityAndGetHashCode(BindingDiagnosticBag diagnostics)
{
if (this.IsInterfaceType())
{
// Interfaces are allowed to define Equals without GetHashCode if they want.
return;
}
if (IsRecord || IsRecordStruct)
{
// For records the warnings reported below are simply going to echo record specific errors,
// producing more noise.
return;
}
bool hasOp = this.GetOperators(WellKnownMemberNames.EqualityOperatorName).Any() ||
this.GetOperators(WellKnownMemberNames.InequalityOperatorName).Any();
bool overridesEquals = this.TypeOverridesObjectMethod("Equals");
if (hasOp || overridesEquals)
{
bool overridesGHC = this.TypeOverridesObjectMethod("GetHashCode");
if (overridesEquals && !overridesGHC)
{
// CS0659: 'C' overrides Object.Equals(object o) but does not override Object.GetHashCode()
diagnostics.Add(ErrorCode.WRN_EqualsWithoutGetHashCode, this.GetFirstLocation(), this);
}
if (hasOp && !overridesEquals)
{
// CS0660: 'C' defines operator == or operator != but does not override Object.Equals(object o)
diagnostics.Add(ErrorCode.WRN_EqualityOpWithoutEquals, this.GetFirstLocation(), this);
}
if (hasOp && !overridesGHC)
{
// CS0661: 'C' defines operator == or operator != but does not override Object.GetHashCode()
diagnostics.Add(ErrorCode.WRN_EqualityOpWithoutGetHashCode, this.GetFirstLocation(), this);
}
}
}
private void CheckForRequiredMemberAttribute(BindingDiagnosticBag diagnostics)
{
if (HasDeclaredRequiredMembers)
{
// Ensure that an error is reported if the required constructor isn't present.
_ = Binder.GetWellKnownTypeMember(DeclaringCompilation, WellKnownMember.System_Runtime_CompilerServices_RequiredMemberAttribute__ctor, diagnostics, GetFirstLocation());
}
if (HasAnyRequiredMembers)
{
_ = Binder.GetWellKnownTypeMember(DeclaringCompilation, WellKnownMember.System_Runtime_CompilerServices_CompilerFeatureRequiredAttribute__ctor, diagnostics, GetFirstLocation());
if (this.IsRecord)
{
// Copy constructors need to emit SetsRequiredMembers on the ctor
_ = Binder.GetWellKnownTypeMember(DeclaringCompilation, WellKnownMember.System_Diagnostics_CodeAnalysis_SetsRequiredMembersAttribute__ctor, diagnostics, GetFirstLocation());
}
}
if (BaseTypeNoUseSiteDiagnostics is (not SourceMemberContainerTypeSymbol) and { HasRequiredMembersError: true })
{
foreach (var member in GetMembersUnordered())
{
if (member is not MethodSymbol method || !method.ShouldCheckRequiredMembers())
{
continue;
}
// The required members list for the base type '{0}' is malformed and cannot be interpreted. To use this constructor, apply the 'SetsRequiredMembers' attribute.
diagnostics.Add(ErrorCode.ERR_RequiredMembersBaseTypeInvalid, method.GetFirstLocation(), BaseTypeNoUseSiteDiagnostics);
}
}
}
private void ReportRequiredMembers(BindingDiagnosticBag diagnostics)
{
Debug.Assert(IsSubmissionClass || IsScriptClass);
foreach (var member in GetMembersUnordered())
{
if (member.IsRequired())
{
// Required members are not allowed on the top level of a script or submission.
diagnostics.Add(ErrorCode.ERR_ScriptsAndSubmissionsCannotHaveRequiredMembers, member.GetFirstLocation());
}
}
}
private bool TypeOverridesObjectMethod(string name)
{
foreach (var method in this.GetMembers(name).OfType<MethodSymbol>())
{
if (method.IsOverride && method.GetConstructedLeastOverriddenMethod(this, requireSameReturnType: false).ContainingType.SpecialType == Microsoft.CodeAnalysis.SpecialType.System_Object)
{
return true;
}
}
return false;
}
private void CheckFiniteFlatteningGraph(BindingDiagnosticBag diagnostics)
{
Debug.Assert(ReferenceEquals(this, this.OriginalDefinition));
if (AllTypeArgumentCount() == 0) return;
var instanceMap = new Dictionary<NamedTypeSymbol, NamedTypeSymbol>(ReferenceEqualityComparer.Instance);
instanceMap.Add(this, this);
foreach (var m in this.GetMembersUnordered())
{
FieldSymbol? f;
// Only instance fields (including field-like events) affect the outcome.
switch (m.Kind)
{
case SymbolKind.Field:
f = (FieldSymbol)m;
Debug.Assert(f.AssociatedSymbol is not EventSymbol, "Didn't expect to find a field-like event backing field in the member list.");
break;
case SymbolKind.Event:
f = ((EventSymbol)m).AssociatedField;
break;
default:
continue;
}
if (f is null || !f.IsStatic || f.Type.TypeKind != TypeKind.Struct) continue;
var type = (NamedTypeSymbol)f.Type;
if (InfiniteFlatteningGraph(this, type, instanceMap))
{
// Struct member '{0}' of type '{1}' causes a cycle in the struct layout
diagnostics.Add(ErrorCode.ERR_StructLayoutCycle, f.GetFirstLocation(), f, type);
//this.KnownCircularStruct = true;
return;
}
}
}
private static bool InfiniteFlatteningGraph(SourceMemberContainerTypeSymbol top, NamedTypeSymbol t, Dictionary<NamedTypeSymbol, NamedTypeSymbol> instanceMap)
{
if (!t.ContainsTypeParameter()) return false;
var tOriginal = t.OriginalDefinition;
if (instanceMap.TryGetValue(tOriginal, out var oldInstance))
{
// short circuit when we find a cycle, but only return true when the cycle contains the top struct
return (!TypeSymbol.Equals(oldInstance, t, TypeCompareKind.AllNullableIgnoreOptions)) && ReferenceEquals(tOriginal, top);
}
else
{
instanceMap.Add(tOriginal, t);
try
{
foreach (var m in t.GetMembersUnordered())
{
var f = m as FieldSymbol;
if (f is null || !f.IsStatic || f.Type.TypeKind != TypeKind.Struct) continue;
var type = (NamedTypeSymbol)f.Type;
if (InfiniteFlatteningGraph(top, type, instanceMap)) return true;
}
return false;
}
finally
{
instanceMap.Remove(tOriginal);
}
}
}
private void CheckSequentialOnPartialType(BindingDiagnosticBag diagnostics)
{
if (!IsPartial || this.Layout.Kind != LayoutKind.Sequential)
{
return;
}
SyntaxReference? whereFoundField = null;
if (this.SyntaxReferences.Length <= 1)
{
return;
}
foreach (var syntaxRef in this.SyntaxReferences)
{
var syntax = syntaxRef.GetSyntax() as TypeDeclarationSyntax;
if (syntax == null)
{
continue;
}
foreach (var m in syntax.Members)
{
if (hasInstanceData(m))
{
if (whereFoundField != null && whereFoundField != syntaxRef)
{
diagnostics.Add(ErrorCode.WRN_SequentialOnPartialClass, GetFirstLocation(), this);
return;
}
whereFoundField = syntaxRef;
}
}
}
if (whereFoundField != null &&
PrimaryConstructor is { } primaryConstructor && primaryConstructor.GetCapturedParameters().Any() &&
(primaryConstructor.SyntaxRef.SyntaxTree != whereFoundField.SyntaxTree || primaryConstructor.SyntaxRef.Span != whereFoundField.Span))
{
diagnostics.Add(ErrorCode.WRN_SequentialOnPartialClass, GetFirstLocation(), this);
return;
}
static bool hasInstanceData(MemberDeclarationSyntax m)
{
switch (m.Kind())
{
case SyntaxKind.FieldDeclaration:
var fieldDecl = (FieldDeclarationSyntax)m;
return
!ContainsModifier(fieldDecl.Modifiers, SyntaxKind.StaticKeyword) &&
!ContainsModifier(fieldDecl.Modifiers, SyntaxKind.ConstKeyword);
case SyntaxKind.PropertyDeclaration:
// auto-property
var propertyDecl = (PropertyDeclarationSyntax)m;
return
!ContainsModifier(propertyDecl.Modifiers, SyntaxKind.StaticKeyword) &&
!ContainsModifier(propertyDecl.Modifiers, SyntaxKind.AbstractKeyword) &&
!ContainsModifier(propertyDecl.Modifiers, SyntaxKind.ExternKeyword) &&
!ContainsModifier(propertyDecl.Modifiers, SyntaxKind.PartialKeyword) &&
propertyDecl.AccessorList != null &&
All(propertyDecl.AccessorList.Accessors, a => a.Body == null && a.ExpressionBody == null);
case SyntaxKind.EventFieldDeclaration:
// field-like event declaration
var eventFieldDecl = (EventFieldDeclarationSyntax)m;
return
!ContainsModifier(eventFieldDecl.Modifiers, SyntaxKind.StaticKeyword) &&
!ContainsModifier(eventFieldDecl.Modifiers, SyntaxKind.AbstractKeyword) &&
!ContainsModifier(eventFieldDecl.Modifiers, SyntaxKind.ExternKeyword);
default:
return false;
}
}
}
private static bool All<T>(SyntaxList<T> list, Func<T, bool> predicate) where T : CSharpSyntaxNode
{
foreach (var t in list) { if (predicate(t)) return true; };
return false;
}
private static bool ContainsModifier(SyntaxTokenList modifiers, SyntaxKind modifier)
{
foreach (var m in modifiers) { if (m.IsKind(modifier)) return true; };
return false;
}
private Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> MakeAllMembers(BindingDiagnosticBag diagnostics)
{
Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> membersByName;
var membersAndInitializers = GetMembersAndInitializers();
// Most types don't have indexers. If this is one of those types,
// just reuse the dictionary we build for early attribute decoding.
// For tuples, we also need to take the slow path.
if (!membersAndInitializers.HaveIndexers && !this.IsTupleType && _lazyEarlyAttributeDecodingMembersDictionary is object)
{
membersByName = _lazyEarlyAttributeDecodingMembersDictionary;
}
else
{
membersByName = ToNameKeyedDictionary(membersAndInitializers.NonTypeMembers);
// Merge types into the member dictionary
AddNestedTypesToDictionary(membersByName, GetTypeMembersDictionary());
}
MergePartialMembers(ref membersByName, diagnostics);
return membersByName;
}
private static void AddNestedTypesToDictionary(
Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> membersByName,
Dictionary<ReadOnlyMemory<char>, ImmutableArray<NamedTypeSymbol>> typesByName)
{
foreach ((ReadOnlyMemory<char> name, ImmutableArray<NamedTypeSymbol> types) in typesByName)
{
ImmutableArray<Symbol> typesAsSymbols = StaticCast<Symbol>.From(types);
ImmutableArray<Symbol> membersForName;
if (membersByName.TryGetValue(name, out membersForName))
{
membersByName[name] = membersForName.Concat(typesAsSymbols);
}
else
{
membersByName.Add(name, typesAsSymbols);
}
}
}
private sealed class DeclaredMembersAndInitializersBuilder
{
public ArrayBuilder<Symbol> NonTypeMembers = ArrayBuilder<Symbol>.GetInstance();
public readonly ArrayBuilder<ArrayBuilder<FieldOrPropertyInitializer>> StaticInitializers = ArrayBuilder<ArrayBuilder<FieldOrPropertyInitializer>>.GetInstance();
public readonly ArrayBuilder<ArrayBuilder<FieldOrPropertyInitializer>> InstanceInitializers = ArrayBuilder<ArrayBuilder<FieldOrPropertyInitializer>>.GetInstance();
public bool HaveIndexers;
public TypeDeclarationSyntax? DeclarationWithParameters;
public SynthesizedPrimaryConstructor? PrimaryConstructor;
public bool IsNullableEnabledForInstanceConstructorsAndFields;
public bool IsNullableEnabledForStaticConstructorsAndFields;
public DeclaredMembersAndInitializers ToReadOnlyAndFree(CSharpCompilation compilation)
{
return new DeclaredMembersAndInitializers(
NonTypeMembers.ToImmutableAndFree(),
MembersAndInitializersBuilder.ToReadOnlyAndFree(StaticInitializers),
MembersAndInitializersBuilder.ToReadOnlyAndFree(InstanceInitializers),
HaveIndexers,
DeclarationWithParameters,
PrimaryConstructor,
isNullableEnabledForInstanceConstructorsAndFields: IsNullableEnabledForInstanceConstructorsAndFields,
isNullableEnabledForStaticConstructorsAndFields: IsNullableEnabledForStaticConstructorsAndFields,
compilation);
}
public void UpdateIsNullableEnabledForConstructorsAndFields(bool useStatic, CSharpCompilation compilation, CSharpSyntaxNode syntax)
{
ref bool isNullableEnabled = ref GetIsNullableEnabledForConstructorsAndFields(useStatic);
isNullableEnabled = isNullableEnabled || compilation.IsNullableAnalysisEnabledIn(syntax);
}
public void UpdateIsNullableEnabledForConstructorsAndFields(bool useStatic, bool value)
{
ref bool isNullableEnabled = ref GetIsNullableEnabledForConstructorsAndFields(useStatic);
isNullableEnabled = isNullableEnabled || value;
}
private ref bool GetIsNullableEnabledForConstructorsAndFields(bool useStatic)
{
return ref useStatic ? ref IsNullableEnabledForStaticConstructorsAndFields : ref IsNullableEnabledForInstanceConstructorsAndFields;
}
public void Free()
{
NonTypeMembers.Free();
foreach (var group in StaticInitializers)
{
group.Free();
}
StaticInitializers.Free();
foreach (var group in InstanceInitializers)
{
group.Free();
}
InstanceInitializers.Free();
}
}
protected sealed class DeclaredMembersAndInitializers
{
public readonly ImmutableArray<Symbol> NonTypeMembers;
public readonly ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> StaticInitializers;
public readonly ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> InstanceInitializers;
public readonly bool HaveIndexers;
public readonly TypeDeclarationSyntax? DeclarationWithParameters;
public readonly SynthesizedPrimaryConstructor? PrimaryConstructor;
public readonly bool IsNullableEnabledForInstanceConstructorsAndFields;
public readonly bool IsNullableEnabledForStaticConstructorsAndFields;
public static readonly DeclaredMembersAndInitializers UninitializedSentinel = new DeclaredMembersAndInitializers();
private DeclaredMembersAndInitializers()
{
}
public DeclaredMembersAndInitializers(
ImmutableArray<Symbol> nonTypeMembers,
ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> staticInitializers,
ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> instanceInitializers,
bool haveIndexers,
TypeDeclarationSyntax? declarationWithParameters,
SynthesizedPrimaryConstructor? primaryConstructor,
bool isNullableEnabledForInstanceConstructorsAndFields,
bool isNullableEnabledForStaticConstructorsAndFields,
CSharpCompilation compilation)
{
Debug.Assert(!nonTypeMembers.IsDefault);
AssertInitializers(staticInitializers, compilation);
AssertInitializers(instanceInitializers, compilation);
Debug.Assert(!nonTypeMembers.Any(static s => s is TypeSymbol));
Debug.Assert(declarationWithParameters is object == primaryConstructor is object);
this.NonTypeMembers = nonTypeMembers;
this.StaticInitializers = staticInitializers;
this.InstanceInitializers = instanceInitializers;
this.HaveIndexers = haveIndexers;
this.DeclarationWithParameters = declarationWithParameters;
this.PrimaryConstructor = primaryConstructor;
this.IsNullableEnabledForInstanceConstructorsAndFields = isNullableEnabledForInstanceConstructorsAndFields;
this.IsNullableEnabledForStaticConstructorsAndFields = isNullableEnabledForStaticConstructorsAndFields;
}
[Conditional("DEBUG")]
public static void AssertInitializers(ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> initializers, CSharpCompilation compilation)
{
Debug.Assert(!initializers.IsDefault);
if (initializers.IsEmpty)
{
return;
}
foreach (ImmutableArray<FieldOrPropertyInitializer> group in initializers)
{
Debug.Assert(!group.IsDefaultOrEmpty);
}
for (int i = 0; i < initializers.Length; i++)
{
if (i > 0)
{
Debug.Assert(LexicalSortKey.Compare(new LexicalSortKey(initializers[i - 1].First().Syntax, compilation), new LexicalSortKey(initializers[i].Last().Syntax, compilation)) < 0);
}
if (i + 1 < initializers.Length)
{
Debug.Assert(LexicalSortKey.Compare(new LexicalSortKey(initializers[i].First().Syntax, compilation), new LexicalSortKey(initializers[i + 1].Last().Syntax, compilation)) < 0);
}
if (initializers[i].Length != 1)
{
Debug.Assert(LexicalSortKey.Compare(new LexicalSortKey(initializers[i].First().Syntax, compilation), new LexicalSortKey(initializers[i].Last().Syntax, compilation)) < 0);
}
}
}
}
private sealed class MembersAndInitializersBuilder
{
private ArrayBuilder<Symbol>? NonTypeMembers;
private ArrayBuilder<FieldOrPropertyInitializer>? InstanceInitializersForPositionalMembers;
private bool IsNullableEnabledForInstanceConstructorsAndFields;
private bool IsNullableEnabledForStaticConstructorsAndFields;
public MembersAndInitializersBuilder(DeclaredMembersAndInitializers declaredMembersAndInitializers)
{
Debug.Assert(declaredMembersAndInitializers != DeclaredMembersAndInitializers.UninitializedSentinel);
this.IsNullableEnabledForInstanceConstructorsAndFields = declaredMembersAndInitializers.IsNullableEnabledForInstanceConstructorsAndFields;
this.IsNullableEnabledForStaticConstructorsAndFields = declaredMembersAndInitializers.IsNullableEnabledForStaticConstructorsAndFields;
}
public MembersAndInitializers ToReadOnlyAndFree(DeclaredMembersAndInitializers declaredMembers)
{
var nonTypeMembers = NonTypeMembers?.ToImmutableAndFree() ?? declaredMembers.NonTypeMembers;
var instanceInitializers = InstanceInitializersForPositionalMembers is null
? declaredMembers.InstanceInitializers
: mergeInitializers();
return new MembersAndInitializers(
declaredMembers.PrimaryConstructor,
nonTypeMembers,
declaredMembers.StaticInitializers,
instanceInitializers,
declaredMembers.HaveIndexers,
isNullableEnabledForInstanceConstructorsAndFields: IsNullableEnabledForInstanceConstructorsAndFields,
isNullableEnabledForStaticConstructorsAndFields: IsNullableEnabledForStaticConstructorsAndFields);
ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> mergeInitializers()
{
Debug.Assert(InstanceInitializersForPositionalMembers.Count != 0);
Debug.Assert(declaredMembers.PrimaryConstructor is object);
Debug.Assert(declaredMembers.DeclarationWithParameters is object);
Debug.Assert(declaredMembers.DeclarationWithParameters.SyntaxTree == InstanceInitializersForPositionalMembers[0].Syntax.SyntaxTree);
Debug.Assert(declaredMembers.DeclarationWithParameters.Span.Contains(InstanceInitializersForPositionalMembers[0].Syntax.Span.Start));
var groupCount = declaredMembers.InstanceInitializers.Length;
if (groupCount == 0)
{
return ImmutableArray.Create(InstanceInitializersForPositionalMembers.ToImmutableAndFree());
}
var compilation = declaredMembers.PrimaryConstructor.DeclaringCompilation;
var sortKey = new LexicalSortKey(InstanceInitializersForPositionalMembers.First().Syntax, compilation);
int insertAt;
for (insertAt = 0; insertAt < groupCount; insertAt++)
{
if (LexicalSortKey.Compare(sortKey, new LexicalSortKey(declaredMembers.InstanceInitializers[insertAt][0].Syntax, compilation)) < 0)
{
break;
}
}
ArrayBuilder<ImmutableArray<FieldOrPropertyInitializer>> groupsBuilder;
if (insertAt != groupCount &&
declaredMembers.DeclarationWithParameters.SyntaxTree == declaredMembers.InstanceInitializers[insertAt][0].Syntax.SyntaxTree &&
declaredMembers.DeclarationWithParameters.Span.Contains(declaredMembers.InstanceInitializers[insertAt][0].Syntax.Span.Start))
{
// Need to merge into the previous group
var declaredInitializers = declaredMembers.InstanceInitializers[insertAt];
var insertedInitializers = InstanceInitializersForPositionalMembers;
#if DEBUG
// initializers should be added in syntax order:
Debug.Assert(insertedInitializers[insertedInitializers.Count - 1].Syntax.SyntaxTree == declaredInitializers[0].Syntax.SyntaxTree);
Debug.Assert(insertedInitializers[insertedInitializers.Count - 1].Syntax.Span.Start < declaredInitializers[0].Syntax.Span.Start);
#endif
insertedInitializers.AddRange(declaredInitializers);
groupsBuilder = ArrayBuilder<ImmutableArray<FieldOrPropertyInitializer>>.GetInstance(groupCount);
groupsBuilder.AddRange(declaredMembers.InstanceInitializers, insertAt);
groupsBuilder.Add(insertedInitializers.ToImmutableAndFree());
groupsBuilder.AddRange(declaredMembers.InstanceInitializers, insertAt + 1, groupCount - (insertAt + 1));
Debug.Assert(groupsBuilder.Count == groupCount);
}
else
{
Debug.Assert(!declaredMembers.InstanceInitializers.Any(g => declaredMembers.DeclarationWithParameters.SyntaxTree == g[0].Syntax.SyntaxTree &&
declaredMembers.DeclarationWithParameters.Span.Contains(g[0].Syntax.Span.Start)));
groupsBuilder = ArrayBuilder<ImmutableArray<FieldOrPropertyInitializer>>.GetInstance(groupCount + 1);
groupsBuilder.AddRange(declaredMembers.InstanceInitializers, insertAt);
groupsBuilder.Add(InstanceInitializersForPositionalMembers.ToImmutableAndFree());
groupsBuilder.AddRange(declaredMembers.InstanceInitializers, insertAt, groupCount - insertAt);
Debug.Assert(groupsBuilder.Count == groupCount + 1);
}
var result = groupsBuilder.ToImmutableAndFree();
DeclaredMembersAndInitializers.AssertInitializers(result, compilation);
return result;
}
}
public void AddInstanceInitializerForPositionalMembers(FieldOrPropertyInitializer initializer)
{
if (InstanceInitializersForPositionalMembers is null)
{
InstanceInitializersForPositionalMembers = ArrayBuilder<FieldOrPropertyInitializer>.GetInstance();
}
InstanceInitializersForPositionalMembers.Add(initializer);
}
public IReadOnlyCollection<Symbol> GetNonTypeMembers(DeclaredMembersAndInitializers declaredMembers)
{
return NonTypeMembers ?? (IReadOnlyCollection<Symbol>)declaredMembers.NonTypeMembers;
}
public void AddNonTypeMember(Symbol member, DeclaredMembersAndInitializers declaredMembers)
{
if (NonTypeMembers is null)
{
NonTypeMembers = ArrayBuilder<Symbol>.GetInstance(declaredMembers.NonTypeMembers.Length + 1);
NonTypeMembers.AddRange(declaredMembers.NonTypeMembers);
}
NonTypeMembers.Add(member);
}
public void SetNonTypeMembers(ArrayBuilder<Symbol> members)
{
NonTypeMembers?.Free();
NonTypeMembers = members;
}
public void UpdateIsNullableEnabledForConstructorsAndFields(bool useStatic, CSharpCompilation compilation, CSharpSyntaxNode syntax)
{
ref bool isNullableEnabled = ref GetIsNullableEnabledForConstructorsAndFields(useStatic);
isNullableEnabled = isNullableEnabled || compilation.IsNullableAnalysisEnabledIn(syntax);
}
private ref bool GetIsNullableEnabledForConstructorsAndFields(bool useStatic)
{
return ref useStatic ? ref IsNullableEnabledForStaticConstructorsAndFields : ref IsNullableEnabledForInstanceConstructorsAndFields;
}
internal static ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> ToReadOnlyAndFree(ArrayBuilder<ArrayBuilder<FieldOrPropertyInitializer>> initializers)
{
if (initializers.Count == 0)
{
initializers.Free();
return ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>>.Empty;
}
var builder = ArrayBuilder<ImmutableArray<FieldOrPropertyInitializer>>.GetInstance(initializers.Count);
foreach (ArrayBuilder<FieldOrPropertyInitializer> group in initializers)
{
builder.Add(group.ToImmutableAndFree());
}
initializers.Free();
return builder.ToImmutableAndFree();
}
public void Free()
{
NonTypeMembers?.Free();
InstanceInitializersForPositionalMembers?.Free();
}
}
private MembersAndInitializers? BuildMembersAndInitializers(BindingDiagnosticBag diagnostics)
{
var declaredMembersAndInitializers = getDeclaredMembersAndInitializers();
if (declaredMembersAndInitializers is null)
{
// Another thread completed the work before this one
return null;
}
var membersAndInitializersBuilder = new MembersAndInitializersBuilder(declaredMembersAndInitializers);
AddSynthesizedMembers(membersAndInitializersBuilder, declaredMembersAndInitializers, diagnostics);
if (Volatile.Read(ref _lazyMembersAndInitializers) != null)
{
// Another thread completed the work before this one
membersAndInitializersBuilder.Free();
return null;
}
return membersAndInitializersBuilder.ToReadOnlyAndFree(declaredMembersAndInitializers);
DeclaredMembersAndInitializers? getDeclaredMembersAndInitializers()
{
var declaredMembersAndInitializers = _lazyDeclaredMembersAndInitializers;
if (declaredMembersAndInitializers != DeclaredMembersAndInitializers.UninitializedSentinel)
{
return declaredMembersAndInitializers;
}
if (Volatile.Read(ref _lazyMembersAndInitializers) is not null)
{
// We're previously computed declared members and already cleared them out
// No need to compute them again
return null;
}
var diagnostics = BindingDiagnosticBag.GetInstance();
declaredMembersAndInitializers = buildDeclaredMembersAndInitializers(diagnostics);
var alreadyKnown = Interlocked.CompareExchange(ref _lazyDeclaredMembersAndInitializers, declaredMembersAndInitializers, DeclaredMembersAndInitializers.UninitializedSentinel);
if (alreadyKnown != DeclaredMembersAndInitializers.UninitializedSentinel)
{
diagnostics.Free();
return alreadyKnown;
}
AddDeclarationDiagnostics(diagnostics);
diagnostics.Free();
return declaredMembersAndInitializers!;
}
// Builds explicitly declared members (as opposed to synthesized members).
// This should not attempt to bind any method parameters as that would cause
// the members being built to be captured in the binder cache before the final
// list of members is determined.
DeclaredMembersAndInitializers? buildDeclaredMembersAndInitializers(BindingDiagnosticBag diagnostics)
{
var builder = new DeclaredMembersAndInitializersBuilder();
AddDeclaredNontypeMembers(builder, diagnostics);
switch (TypeKind)
{
case TypeKind.Struct:
CheckForStructBadInitializers(builder, diagnostics);
CheckForStructDefaultConstructors(builder.NonTypeMembers, isEnum: false, diagnostics: diagnostics);
break;
case TypeKind.Enum:
CheckForStructDefaultConstructors(builder.NonTypeMembers, isEnum: true, diagnostics: diagnostics);
break;
case TypeKind.Class:
case TypeKind.Interface:
case TypeKind.Submission:
// No additional checking required.
break;
default:
break;
}
if (Volatile.Read(ref _lazyDeclaredMembersAndInitializers) != DeclaredMembersAndInitializers.UninitializedSentinel)
{
// _lazyDeclaredMembersAndInitializers is already computed. no point to continue.
builder.Free();
return null;
}
return builder.ToReadOnlyAndFree(DeclaringCompilation);
}
}
internal ImmutableArray<SynthesizedSimpleProgramEntryPointSymbol> GetSimpleProgramEntryPoints()
{
if (_lazySimpleProgramEntryPoints.IsDefault)
{
var diagnostics = BindingDiagnosticBag.GetInstance();
var simpleProgramEntryPoints = buildSimpleProgramEntryPoint(diagnostics);
if (ImmutableInterlocked.InterlockedInitialize(ref _lazySimpleProgramEntryPoints, simpleProgramEntryPoints))
{
AddDeclarationDiagnostics(diagnostics);
}
diagnostics.Free();
}
Debug.Assert(!_lazySimpleProgramEntryPoints.IsDefault);
return _lazySimpleProgramEntryPoints;
ImmutableArray<SynthesizedSimpleProgramEntryPointSymbol> buildSimpleProgramEntryPoint(BindingDiagnosticBag diagnostics)
{
if (this.ContainingSymbol is not NamespaceSymbol { IsGlobalNamespace: true }
|| this.Name != WellKnownMemberNames.TopLevelStatementsEntryPointTypeName)
{
return ImmutableArray<SynthesizedSimpleProgramEntryPointSymbol>.Empty;
}
ArrayBuilder<SynthesizedSimpleProgramEntryPointSymbol>? builder = null;
foreach (var singleDecl in declaration.Declarations)
{
if (singleDecl.IsSimpleProgram)
{
if (builder is null)
{
builder = ArrayBuilder<SynthesizedSimpleProgramEntryPointSymbol>.GetInstance();
}
else
{
Binder.Error(diagnostics, ErrorCode.ERR_SimpleProgramMultipleUnitsWithTopLevelStatements, singleDecl.NameLocation);
}
builder.Add(new SynthesizedSimpleProgramEntryPointSymbol(this, singleDecl, diagnostics));
}
}
if (builder is null)
{
return ImmutableArray<SynthesizedSimpleProgramEntryPointSymbol>.Empty;
}
return builder.ToImmutableAndFree();
}
}
internal bool HasPrimaryConstructor => this._flags.HasPrimaryConstructor;
internal SynthesizedPrimaryConstructor? PrimaryConstructor
{
get
{
if (!HasPrimaryConstructor)
return null;
var declared = Volatile.Read(ref _lazyDeclaredMembersAndInitializers);
SynthesizedPrimaryConstructor? result;
if (declared is not null && declared != DeclaredMembersAndInitializers.UninitializedSentinel)
{
result = declared.PrimaryConstructor;
}
else
{
result = GetMembersAndInitializers().PrimaryConstructor;
}
Debug.Assert(result is object);
return result;
}
}
internal IEnumerable<SourceMemberMethodSymbol> GetMethodsPossiblyCapturingPrimaryConstructorParameters()
{
ImmutableArray<Symbol> nonTypeMembersToCheck;
SynthesizedPrimaryConstructor? primaryConstructor;
var declared = Volatile.Read(ref _lazyDeclaredMembersAndInitializers);
if (declared is not null && declared != DeclaredMembersAndInitializers.UninitializedSentinel)
{
nonTypeMembersToCheck = declared.NonTypeMembers;
primaryConstructor = declared.PrimaryConstructor;
}
else
{
var membersAndInituializers = GetMembersAndInitializers();
nonTypeMembersToCheck = membersAndInituializers.NonTypeMembers;
primaryConstructor = membersAndInituializers.PrimaryConstructor;
}
Debug.Assert(primaryConstructor is not null);
Debug.Assert(!this.IsDelegateType());
foreach (var member in nonTypeMembersToCheck)
{
if ((object)member == primaryConstructor)
{
continue;
}
if (member.IsStatic ||
!(member is MethodSymbol method && MethodCompiler.GetMethodToCompile(method) is SourceMemberMethodSymbol sourceMethod))
{
continue;
}
if (sourceMethod.IsExtern)
{
continue;
}
if (sourceMethod.IsAbstract || sourceMethod.SynthesizesLoweredBoundBody)
{
continue;
}
yield return sourceMethod;
}
}
internal ImmutableArray<Symbol> GetMembersToMatchAgainstDeclarationSpan()
{
var declared = Volatile.Read(ref _lazyDeclaredMembersAndInitializers);
if (declared is not null && declared != DeclaredMembersAndInitializers.UninitializedSentinel)
{
Debug.Assert(declared.PrimaryConstructor is not null);
return declared.NonTypeMembers;
}
else
{
var membersAndInituializers = GetMembersAndInitializers();
Debug.Assert(membersAndInituializers.PrimaryConstructor is not null);
return membersAndInituializers.NonTypeMembers;
}
}
internal ImmutableArray<Symbol> GetCandidateMembersForLookup(string name)
{
if (this is { IsRecord: true } or { IsRecordStruct: true } ||
this.state.HasComplete(CompletionPart.Members))
{
return GetMembers(name);
}
ImmutableArray<Symbol> nonTypeMembersToCheck;
SynthesizedPrimaryConstructor? primaryConstructor;
var declared = Volatile.Read(ref _lazyDeclaredMembersAndInitializers);
if (declared is not null && declared != DeclaredMembersAndInitializers.UninitializedSentinel)
{
nonTypeMembersToCheck = declared.NonTypeMembers;
primaryConstructor = declared.PrimaryConstructor;
}
else
{
var membersAndInituializers = GetMembersAndInitializers();
nonTypeMembersToCheck = membersAndInituializers.NonTypeMembers;
primaryConstructor = membersAndInituializers.PrimaryConstructor;
}
Debug.Assert(primaryConstructor is not null);
if (primaryConstructor.ParameterCount == 0)
{
return GetMembers(name);
}
ImmutableArray<Symbol> types = GetTypeMembers(name).Cast<NamedTypeSymbol, Symbol>();
ArrayBuilder<Symbol>? memberBuilder = null;
foreach (var member in nonTypeMembersToCheck)
{
if (member.IsAccessor())
{
continue;
}
if (member.Name == name)
{
memberBuilder ??= ArrayBuilder<Symbol>.GetInstance(types.Length + 1);
memberBuilder.Add(member);
}
}
if (memberBuilder is null)
{
return types;
}
memberBuilder.AddRange(types);
return memberBuilder.ToImmutableAndFree();
}
private void AddSynthesizedMembers(MembersAndInitializersBuilder builder, DeclaredMembersAndInitializers declaredMembersAndInitializers, BindingDiagnosticBag diagnostics)
{
if (TypeKind is TypeKind.Class)
{
AddSynthesizedSimpleProgramEntryPointIfNecessary(builder, declaredMembersAndInitializers);
}
switch (TypeKind)
{
case TypeKind.Struct:
case TypeKind.Enum:
case TypeKind.Class:
case TypeKind.Interface:
case TypeKind.Submission:
AddSynthesizedTypeMembersIfNecessary(builder, declaredMembersAndInitializers, diagnostics);
AddSynthesizedConstructorsIfNecessary(builder, declaredMembersAndInitializers, diagnostics);
break;
default:
break;
}
AddSynthesizedTupleMembersIfNecessary(builder, declaredMembersAndInitializers);
}
private void AddDeclaredNontypeMembers(DeclaredMembersAndInitializersBuilder builder, BindingDiagnosticBag diagnostics)
{
foreach (var decl in this.declaration.Declarations)
{
if (!decl.HasAnyNontypeMembers)
{
continue;
}
if (_lazyMembersAndInitializers != null)
{
// membersAndInitializers is already computed. no point to continue.
return;
}
var syntax = decl.SyntaxReference.GetSyntax();
switch (syntax.Kind())
{
case SyntaxKind.EnumDeclaration:
AddEnumMembers(builder, (EnumDeclarationSyntax)syntax, diagnostics);
break;
case SyntaxKind.DelegateDeclaration:
SourceDelegateMethodSymbol.AddDelegateMembers(this, builder.NonTypeMembers, (DelegateDeclarationSyntax)syntax, diagnostics);
break;
case SyntaxKind.NamespaceDeclaration:
case SyntaxKind.FileScopedNamespaceDeclaration:
// The members of a global anonymous type is in a syntax tree of a namespace declaration or a compilation unit.
AddNonTypeMembers(builder, ((BaseNamespaceDeclarationSyntax)syntax).Members, diagnostics);
break;
case SyntaxKind.CompilationUnit:
AddNonTypeMembers(builder, ((CompilationUnitSyntax)syntax).Members, diagnostics);
break;
case SyntaxKind.InterfaceDeclaration:
AddNonTypeMembers(builder, ((InterfaceDeclarationSyntax)syntax).Members, diagnostics);
break;
case SyntaxKind.ClassDeclaration:
case SyntaxKind.StructDeclaration:
case SyntaxKind.RecordDeclaration:
case SyntaxKind.RecordStructDeclaration:
var typeDecl = (TypeDeclarationSyntax)syntax;
noteTypeParameters(typeDecl, builder, diagnostics);
AddNonTypeMembers(builder, typeDecl.Members, diagnostics);
break;
default:
throw ExceptionUtilities.UnexpectedValue(syntax.Kind());
}
}
void noteTypeParameters(TypeDeclarationSyntax syntax, DeclaredMembersAndInitializersBuilder builder, BindingDiagnosticBag diagnostics)
{
var parameterList = syntax.ParameterList;
if (parameterList is null)
{
return;
}
if (builder.DeclarationWithParameters is null)
{
builder.DeclarationWithParameters = syntax;
var ctor = new SynthesizedPrimaryConstructor(this, syntax);
if (this.IsStatic)
{
diagnostics.Add(ErrorCode.ERR_ConstructorInStaticClass, syntax.Identifier.GetLocation());
}
builder.PrimaryConstructor = ctor;
var compilation = DeclaringCompilation;
builder.UpdateIsNullableEnabledForConstructorsAndFields(ctor.IsStatic, compilation, parameterList);
if (syntax is { PrimaryConstructorBaseTypeIfClass: { ArgumentList: { } baseParamList } })
{
builder.UpdateIsNullableEnabledForConstructorsAndFields(ctor.IsStatic, compilation, baseParamList);
}
}
else
{
diagnostics.Add(ErrorCode.ERR_MultipleRecordParameterLists, parameterList.Location);
}
}
}
internal Binder GetBinder(CSharpSyntaxNode syntaxNode)
{
return this.DeclaringCompilation.GetBinder(syntaxNode);
}
private void MergePartialMembers(
ref Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> membersByName,
BindingDiagnosticBag diagnostics)
{
var memberNames = ArrayBuilder<ReadOnlyMemory<char>>.GetInstance(membersByName.Count);
memberNames.AddRange(membersByName.Keys);
//key and value will be the same object
var membersBySignature = new Dictionary<Symbol, Symbol>(MemberSignatureComparer.PartialMethodsComparer);
foreach (var name in memberNames)
{
membersBySignature.Clear();
foreach (var symbol in membersByName[name])
{
if (!symbol.IsPartialMember())
{
continue;
}
if (!membersBySignature.TryGetValue(symbol, out var prev))
{
membersBySignature.Add(symbol, symbol);
continue;
}
switch (symbol, prev)
{
case (SourceOrdinaryMethodSymbol currentMethod, SourceOrdinaryMethodSymbol prevMethod):
mergePartialMethods(ref membersByName, name, currentMethod, prevMethod, diagnostics);
break;
case (SourcePropertySymbol currentProperty, SourcePropertySymbol prevProperty):
mergePartialProperties(ref membersByName, name, currentProperty, prevProperty, diagnostics);
break;
case (SourcePropertyAccessorSymbol, SourcePropertyAccessorSymbol):
break; // accessor symbols and their diagnostics are handled by processing the associated property
default:
// This is an error scenario. We simply don't merge the symbols in this case and a duplicate name diagnostic is reported separately.
// One way this case can be reached is if type contains both `public partial int P { get; }` and `public partial int P_get();`.
Debug.Assert(symbol is SourceOrdinaryMethodSymbol or SourcePropertySymbol or SourcePropertyAccessorSymbol);
Debug.Assert(prev is SourceOrdinaryMethodSymbol or SourcePropertySymbol or SourcePropertyAccessorSymbol);
break;
}
}
foreach (var symbol in membersBySignature.Values)
{
switch (symbol)
{
case SourceOrdinaryMethodSymbol method:
// partial implementations not paired with a definition
if (method.IsPartialImplementation && method.OtherPartOfPartial is null)
{
diagnostics.Add(ErrorCode.ERR_PartialMethodMustHaveLatent, method.GetFirstLocation(), method);
}
else if (method is { IsPartialDefinition: true, OtherPartOfPartial: null, HasExplicitAccessModifier: true })
{
diagnostics.Add(ErrorCode.ERR_PartialMethodWithAccessibilityModsMustHaveImplementation, method.GetFirstLocation(), method);
}
break;
case SourcePropertySymbol property:
if (property.OtherPartOfPartial is null)
{
diagnostics.Add(
property.IsPartialDefinition ? ErrorCode.ERR_PartialPropertyMissingImplementation : ErrorCode.ERR_PartialPropertyMissingDefinition,
property.GetFirstLocation(),
property);
}
break;
case SourcePropertyAccessorSymbol:
break; // diagnostics for missing partial accessors are handled in 'mergePartialProperties'.
default:
throw ExceptionUtilities.UnexpectedValue(symbol);
}
}
}
memberNames.Free();
void mergePartialMethods(ref Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> membersByName, ReadOnlyMemory<char> name, SourceOrdinaryMethodSymbol currentMethod, SourceOrdinaryMethodSymbol prevMethod, BindingDiagnosticBag diagnostics)
{
if (currentMethod.IsPartialImplementation &&
(prevMethod.IsPartialImplementation || (prevMethod.OtherPartOfPartial is MethodSymbol otherImplementation && (object)otherImplementation != currentMethod)))
{
// A partial method may not have multiple implementing declarations
diagnostics.Add(ErrorCode.ERR_PartialMethodOnlyOneActual, currentMethod.GetFirstLocation());
}
else if (currentMethod.IsPartialDefinition &&
(prevMethod.IsPartialDefinition || (prevMethod.OtherPartOfPartial is MethodSymbol otherDefinition && (object)otherDefinition != currentMethod)))
{
// A partial method may not have multiple defining declarations
diagnostics.Add(ErrorCode.ERR_PartialMethodOnlyOneLatent, currentMethod.GetFirstLocation());
}
else
{
DuplicateMembersByNameIfCached(ref membersByName);
membersByName[name] = FixPartialMethod(membersByName[name], prevMethod, currentMethod);
}
}
void mergePartialProperties(ref Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> membersByName, ReadOnlyMemory<char> name, SourcePropertySymbol currentProperty, SourcePropertySymbol prevProperty, BindingDiagnosticBag diagnostics)
{
if (currentProperty.IsPartialImplementation &&
(prevProperty.IsPartialImplementation || (prevProperty.OtherPartOfPartial is SourcePropertySymbol otherImplementation && (object)otherImplementation != currentProperty)))
{
diagnostics.Add(ErrorCode.ERR_PartialPropertyDuplicateImplementation, currentProperty.GetFirstLocation());
}
else if (currentProperty.IsPartialDefinition &&
(prevProperty.IsPartialDefinition || (prevProperty.OtherPartOfPartial is SourcePropertySymbol otherDefinition && (object)otherDefinition != currentProperty)))
{
diagnostics.Add(ErrorCode.ERR_PartialPropertyDuplicateDefinition, currentProperty.GetFirstLocation());
}
else
{
if (hasInitializer(prevProperty) && hasInitializer(currentProperty))
{
diagnostics.Add(ErrorCode.ERR_PartialPropertyDuplicateInitializer, currentProperty.GetFirstLocation());
}
DuplicateMembersByNameIfCached(ref membersByName);
mergeAccessors(ref membersByName, (SourcePropertyAccessorSymbol?)currentProperty.GetMethod, (SourcePropertyAccessorSymbol?)prevProperty.GetMethod);
mergeAccessors(ref membersByName, (SourcePropertyAccessorSymbol?)currentProperty.SetMethod, (SourcePropertyAccessorSymbol?)prevProperty.SetMethod);
FixPartialProperty(ref membersByName, name, prevProperty, currentProperty);
}
void mergeAccessors(ref Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> membersByName, SourcePropertyAccessorSymbol? currentAccessor, SourcePropertyAccessorSymbol? prevAccessor)
{
if (currentAccessor is { } && prevAccessor is { })
{
var name = currentAccessor.Name.AsMemory();
var implementationAccessor = currentProperty.IsPartialDefinition ? prevAccessor : currentAccessor;
membersByName[name] = Remove(membersByName[name], implementationAccessor);
}
else if (currentAccessor is { } || prevAccessor is { })
{
var (foundAccessor, containingProperty, otherProperty) = prevAccessor is { } ? (prevAccessor, prevProperty, currentProperty) : (currentAccessor!, currentProperty, prevProperty);
// When an accessor is present on definition but not on implementation, the accessor is said to be missing on the implementation.
// When an accessor is present on implementation but not on definition, the accessor is said to be unexpected on the implementation.
var (errorCode, propertyToBlame) = foundAccessor.IsPartialDefinition
? (ErrorCode.ERR_PartialPropertyMissingAccessor, otherProperty)
: (ErrorCode.ERR_PartialPropertyUnexpectedAccessor, containingProperty);
diagnostics.Add(errorCode, propertyToBlame.GetFirstLocation(), foundAccessor);
}
}
static bool hasInitializer(SourcePropertySymbol property)
{
return property.DeclaredBackingField?.HasInitializer == true;
}
}
}
private void DuplicateMembersByNameIfCached(ref Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> membersByName)
{
if ((object)membersByName == _lazyEarlyAttributeDecodingMembersDictionary)
{
// Avoid mutating the cached dictionary and especially avoid doing this possibly on multiple threads in parallel.
membersByName = new Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>>(membersByName, ReadOnlyMemoryOfCharComparer.Instance);
}
}
/// <summary>Links together the definition and implementation parts of a partial method. Returns a member list which has the implementation part removed.</summary>
private static ImmutableArray<Symbol> FixPartialMethod(ImmutableArray<Symbol> symbols, SourceOrdinaryMethodSymbol part1, SourceOrdinaryMethodSymbol part2)
{
SourceOrdinaryMethodSymbol definition;
SourceOrdinaryMethodSymbol implementation;
if (part1.IsPartialDefinition)
{
definition = part1;
implementation = part2;
}
else
{
definition = part2;
implementation = part1;
}
SourceOrdinaryMethodSymbol.InitializePartialMethodParts(definition, implementation);
// a partial method is represented in the member list by its definition part:
return Remove(symbols, implementation);
}
/// <summary>Links together the definition and implementation parts of a partial property. Returns a member list which has the implementation part removed.</summary>
private static void FixPartialProperty(ref Dictionary<ReadOnlyMemory<char>, ImmutableArray<Symbol>> membersByName, ReadOnlyMemory<char> name, SourcePropertySymbol part1, SourcePropertySymbol part2)
{
SourcePropertySymbol definition;
SourcePropertySymbol implementation;
if (part1.IsPartialDefinition)
{
definition = part1;
implementation = part2;
}
else
{
definition = part2;
implementation = part1;
}
if (implementation.DeclaredBackingField is { } implementationField &&
definition.DeclaredBackingField is { })
{
var fieldName = implementationField.Name.AsMemory();
membersByName[fieldName] = Remove(membersByName[fieldName], implementationField);
}
SourcePropertySymbol.InitializePartialPropertyParts(definition, implementation);
// a partial property is represented in the member list by its definition part:
membersByName[name] = Remove(membersByName[name], implementation);
}
private static ImmutableArray<Symbol> Remove(ImmutableArray<Symbol> symbols, Symbol symbol)
{
var builder = ArrayBuilder<Symbol>.GetInstance();
foreach (var s in symbols)
{
if (!ReferenceEquals(s, symbol))
{
builder.Add(s);
}
}
return builder.ToImmutableAndFree();
}
/// <summary>
/// Report an error if a member (other than a method) exists with the same name
/// as the property accessor, or if a method exists with the same name and signature.
/// </summary>
private void CheckForMemberConflictWithPropertyAccessor(
PropertySymbol propertySymbol,
bool getNotSet,
BindingDiagnosticBag diagnostics)
{
Debug.Assert(!propertySymbol.IsExplicitInterfaceImplementation); // checked by caller
MethodSymbol accessor = getNotSet ? propertySymbol.GetMethod : propertySymbol.SetMethod;
string accessorName;
if ((object)accessor != null)
{
accessorName = accessor.Name;
}
else
{
string propertyName = propertySymbol.IsIndexer ? propertySymbol.MetadataName : propertySymbol.Name;
accessorName = SourcePropertyAccessorSymbol.GetAccessorName(propertyName,
getNotSet,
propertySymbol.IsCompilationOutputWinMdObj());
}
foreach (var symbol in GetMembers(accessorName))
{
if (symbol.Kind != SymbolKind.Method)
{
// The type '{0}' already contains a definition for '{1}'
if (Locations.Length == 1 || IsPartial)
diagnostics.Add(ErrorCode.ERR_DuplicateNameInClass, GetAccessorOrPropertyLocation(propertySymbol, getNotSet), this, accessorName);
return;
}
else
{
var methodSymbol = (MethodSymbol)symbol;
if ((methodSymbol.MethodKind == MethodKind.Ordinary) &&
ParametersMatchPropertyAccessor(propertySymbol, getNotSet, methodSymbol.Parameters))
{
// Type '{1}' already reserves a member called '{0}' with the same parameter types
diagnostics.Add(ErrorCode.ERR_MemberReserved, GetAccessorOrPropertyLocation(propertySymbol, getNotSet), accessorName, this);
return;
}
}
}
}
/// <summary>
/// Report an error if a member (other than a method) exists with the same name
/// as the event accessor, or if a method exists with the same name and signature.
/// </summary>
private void CheckForMemberConflictWithEventAccessor(
EventSymbol eventSymbol,
bool isAdder,
BindingDiagnosticBag diagnostics)
{
Debug.Assert(!eventSymbol.IsExplicitInterfaceImplementation); // checked by caller
string accessorName = SourceEventSymbol.GetAccessorName(eventSymbol.Name, isAdder);
foreach (var symbol in GetMembers(accessorName))
{
if (symbol.Kind != SymbolKind.Method)
{
// The type '{0}' already contains a definition for '{1}'
if (Locations.Length == 1 || IsPartial)
diagnostics.Add(ErrorCode.ERR_DuplicateNameInClass, GetAccessorOrEventLocation(eventSymbol, isAdder), this, accessorName);
return;
}
else
{
var methodSymbol = (MethodSymbol)symbol;
if ((methodSymbol.MethodKind == MethodKind.Ordinary) &&
ParametersMatchEventAccessor(eventSymbol, methodSymbol.Parameters))
{
// Type '{1}' already reserves a member called '{0}' with the same parameter types
diagnostics.Add(ErrorCode.ERR_MemberReserved, GetAccessorOrEventLocation(eventSymbol, isAdder), accessorName, this);
return;
}
}
}
}
/// <summary>
/// Return the location of the accessor, or if no accessor, the location of the property.
/// </summary>
private static Location GetAccessorOrPropertyLocation(PropertySymbol propertySymbol, bool getNotSet)
{
var locationFrom = (Symbol)(getNotSet ? propertySymbol.GetMethod : propertySymbol.SetMethod) ?? propertySymbol;
return locationFrom.GetFirstLocation();
}
/// <summary>
/// Return the location of the accessor, or if no accessor, the location of the event.
/// </summary>
private static Location GetAccessorOrEventLocation(EventSymbol propertySymbol, bool isAdder)
{
var locationFrom = (Symbol?)(isAdder ? propertySymbol.AddMethod : propertySymbol.RemoveMethod) ?? propertySymbol;
return locationFrom.GetFirstLocation();
}
/// <summary>
/// Return true if the method parameters match the parameters of the
/// property accessor, including the value parameter for the setter.
/// </summary>
private static bool ParametersMatchPropertyAccessor(PropertySymbol propertySymbol, bool getNotSet, ImmutableArray<ParameterSymbol> methodParams)
{
var propertyParams = propertySymbol.Parameters;
var numParams = propertyParams.Length + (getNotSet ? 0 : 1);
if (numParams != methodParams.Length)
{
return false;
}
for (int i = 0; i < numParams; i++)
{
var methodParam = methodParams[i];
if (methodParam.RefKind != RefKind.None)
{
return false;
}
var propertyParamType = (((i == numParams - 1) && !getNotSet) ? propertySymbol.TypeWithAnnotations : propertyParams[i].TypeWithAnnotations).Type;
if (!propertyParamType.Equals(methodParam.Type, TypeCompareKind.AllIgnoreOptions))
{
return false;
}
}
return true;
}
/// <summary>
/// Return true if the method parameters match the parameters of the
/// event accessor, including the value parameter.
/// </summary>
private static bool ParametersMatchEventAccessor(EventSymbol eventSymbol, ImmutableArray<ParameterSymbol> methodParams)
{
return
methodParams.Length == 1 &&
methodParams[0].RefKind == RefKind.None &&
eventSymbol.Type.Equals(methodParams[0].Type, TypeCompareKind.AllIgnoreOptions);
}
private void AddEnumMembers(DeclaredMembersAndInitializersBuilder result, EnumDeclarationSyntax syntax, BindingDiagnosticBag diagnostics)
{
// The previous enum constant used to calculate subsequent
// implicit enum constants. (This is the most recent explicit
// enum constant or the first implicit constant if no explicit values.)
SourceEnumConstantSymbol? otherSymbol = null;
// Offset from "otherSymbol".
int otherSymbolOffset = 0;
foreach (var member in syntax.Members)
{
SourceEnumConstantSymbol symbol;
var valueOpt = member.EqualsValue;
if (valueOpt != null)
{
symbol = SourceEnumConstantSymbol.CreateExplicitValuedConstant(this, member, diagnostics);
}
else
{
symbol = SourceEnumConstantSymbol.CreateImplicitValuedConstant(this, member, otherSymbol, otherSymbolOffset, diagnostics);
}
result.NonTypeMembers.Add(symbol);
if (valueOpt != null || otherSymbol is null)
{
otherSymbol = symbol;
otherSymbolOffset = 1;
}
else
{
otherSymbolOffset++;
}
}
}
private static void AddInitializer(ref ArrayBuilder<FieldOrPropertyInitializer>? initializers, FieldSymbol? fieldOpt, CSharpSyntaxNode node)
{
if (initializers == null)
{
initializers = ArrayBuilder<FieldOrPropertyInitializer>.GetInstance();
}
else if (initializers.Count != 0)
{
// initializers should be added in syntax order:
Debug.Assert(node.SyntaxTree == initializers.Last().Syntax.SyntaxTree);
Debug.Assert(node.SpanStart > initializers.Last().Syntax.Span.Start);
}
initializers.Add(new FieldOrPropertyInitializer(fieldOpt, node));
}
private static void AddInitializers(
ArrayBuilder<ArrayBuilder<FieldOrPropertyInitializer>> allInitializers,
ArrayBuilder<FieldOrPropertyInitializer>? siblingsOpt)
{
if (siblingsOpt != null)
{
allInitializers.Add(siblingsOpt);
}
}
private static void CheckInterfaceMembers(ImmutableArray<Symbol> nonTypeMembers, BindingDiagnosticBag diagnostics)
{
foreach (var member in nonTypeMembers)
{
CheckInterfaceMember(member, diagnostics);
}
}
private static void CheckInterfaceMember(Symbol member, BindingDiagnosticBag diagnostics)
{
switch (member.Kind)
{
case SymbolKind.Field:
break;
case SymbolKind.Method:
var meth = (MethodSymbol)member;
switch (meth.MethodKind)
{
case MethodKind.Constructor:
diagnostics.Add(ErrorCode.ERR_InterfacesCantContainConstructors, member.GetFirstLocation());
break;
case MethodKind.Conversion:
break;
case MethodKind.UserDefinedOperator:
break;
case MethodKind.Destructor:
diagnostics.Add(ErrorCode.ERR_OnlyClassesCanContainDestructors, member.GetFirstLocation());
break;
case MethodKind.ExplicitInterfaceImplementation:
//CS0541 is handled in SourcePropertySymbol
case MethodKind.Ordinary:
case MethodKind.LocalFunction:
case MethodKind.PropertyGet:
case MethodKind.PropertySet:
case MethodKind.EventAdd:
case MethodKind.EventRemove:
case MethodKind.StaticConstructor:
break;
default:
throw ExceptionUtilities.UnexpectedValue(meth.MethodKind);
}
break;
case SymbolKind.Property:
break;
case SymbolKind.Event:
break;
default:
throw ExceptionUtilities.UnexpectedValue(member.Kind);
}
}
private static void CheckForStructDefaultConstructors(
ArrayBuilder<Symbol> members,
bool isEnum,
BindingDiagnosticBag diagnostics)
{
foreach (var s in members)
{
var m = s as MethodSymbol;
if (!(m is null))
{
if (m.MethodKind == MethodKind.Constructor && m.ParameterCount == 0)
{
var location = m.GetFirstLocation();
if (isEnum)
{
diagnostics.Add(ErrorCode.ERR_EnumsCantContainDefaultConstructor, location);
}
else
{
MessageID.IDS_FeatureParameterlessStructConstructors.CheckFeatureAvailability(diagnostics, m.DeclaringCompilation, location);
if (m.DeclaredAccessibility != Accessibility.Public)
{
diagnostics.Add(ErrorCode.ERR_NonPublicParameterlessStructConstructor, location);
}
}
}
}
}
}
private void CheckForStructBadInitializers(DeclaredMembersAndInitializersBuilder builder, BindingDiagnosticBag diagnostics)
{
Debug.Assert(TypeKind == TypeKind.Struct);
if (builder.DeclarationWithParameters is not null)
{
Debug.Assert(builder.DeclarationWithParameters is TypeDeclarationSyntax { ParameterList: not null } type
&& type.Kind() is (SyntaxKind.RecordStructDeclaration or SyntaxKind.StructDeclaration));
return;
}
bool hasInitializers = false;
foreach (var initializers in builder.InstanceInitializers)
{
foreach (FieldOrPropertyInitializer initializer in initializers)
{
hasInitializers = true;
var symbol = initializer.FieldOpt.AssociatedSymbol ?? initializer.FieldOpt;
MessageID.IDS_FeatureStructFieldInitializers.CheckFeatureAvailability(diagnostics, symbol.DeclaringCompilation, symbol.GetFirstLocation());
}
}
if (hasInitializers && !builder.NonTypeMembers.Any(member => member is MethodSymbol { MethodKind: MethodKind.Constructor }))
{
diagnostics.Add(ErrorCode.ERR_StructHasInitializersAndNoDeclaredConstructor, GetFirstLocation());
}
}
private void AddSynthesizedSimpleProgramEntryPointIfNecessary(MembersAndInitializersBuilder builder, DeclaredMembersAndInitializers declaredMembersAndInitializers)
{
var simpleProgramEntryPoints = GetSimpleProgramEntryPoints();
foreach (var member in simpleProgramEntryPoints)
{
builder.AddNonTypeMember(member, declaredMembersAndInitializers);
}
}
private void AddSynthesizedTypeMembersIfNecessary(MembersAndInitializersBuilder builder, DeclaredMembersAndInitializers declaredMembersAndInitializers, BindingDiagnosticBag diagnostics)
{
if (declaration.Kind is not (DeclarationKind.Record or DeclarationKind.RecordStruct) && declaredMembersAndInitializers.PrimaryConstructor is null)
{
return;
}
var membersSoFar = builder.GetNonTypeMembers(declaredMembersAndInitializers);
var members = ArrayBuilder<Symbol>.GetInstance(membersSoFar.Count + 1);
if (declaration.Kind is not (DeclarationKind.Record or DeclarationKind.RecordStruct))
{
// primary ctor
var ctor = declaredMembersAndInitializers.PrimaryConstructor;
Debug.Assert(ctor is object);
members.Add(ctor);
members.AddRange(ctor.GetBackingFields());
members.AddRange(membersSoFar);
builder.SetNonTypeMembers(members);
return;
}
Debug.Assert(declaredMembersAndInitializers.PrimaryConstructor?.GetBackingFields().Any() != true);
ParameterListSyntax? paramList = declaredMembersAndInitializers.DeclarationWithParameters?.ParameterList;
var memberSignatures = s_duplicateRecordMemberSignatureDictionary.Allocate();
var fieldsByName = PooledDictionary<string, Symbol>.GetInstance();
var memberNames = PooledHashSet<string>.GetInstance();
foreach (var member in membersSoFar)
{
memberNames.Add(member.Name);
switch (member)
{
case EventSymbol:
case MethodSymbol { MethodKind: not (MethodKind.Ordinary or MethodKind.Constructor) }:
continue;
case FieldSymbol { Name: var fieldName }:
if (!fieldsByName.ContainsKey(fieldName))
{
fieldsByName.Add(fieldName, member);
}
continue;
}
if (!memberSignatures.ContainsKey(member))
{
memberSignatures.Add(member, member);
}
}
CSharpCompilation compilation = this.DeclaringCompilation;
bool isRecordClass = declaration.Kind == DeclarationKind.Record;
// Positional record
bool primaryAndCopyCtorAmbiguity = false;
if (!(paramList is null))
{
Debug.Assert(declaredMembersAndInitializers.DeclarationWithParameters is object);
// primary ctor
var ctor = declaredMembersAndInitializers.PrimaryConstructor;
Debug.Assert(ctor is object);
members.Add(ctor);
if (ctor.ParameterCount != 0)
{
// properties and Deconstruct
var existingOrAddedMembers = addProperties(ctor.Parameters);
addDeconstruct(ctor, existingOrAddedMembers);
}
if (isRecordClass)
{
primaryAndCopyCtorAmbiguity = ctor.ParameterCount == 1 && ctor.Parameters[0].Type.Equals(this, TypeCompareKind.AllIgnoreOptions);
}
}
if (isRecordClass)
{
addCopyCtor(primaryAndCopyCtorAmbiguity);
addCloneMethod();
}
PropertySymbol? equalityContract = isRecordClass ? addEqualityContract() : null;
var thisEquals = addThisEquals(equalityContract);
if (isRecordClass)
{
addBaseEquals();
}
addObjectEquals(thisEquals);
var getHashCode = addGetHashCode(equalityContract);
addEqualityOperators();
if (thisEquals is not SynthesizedRecordEquals && getHashCode is SynthesizedRecordGetHashCode)
{
diagnostics.Add(ErrorCode.WRN_RecordEqualsWithoutGetHashCode, thisEquals.GetFirstLocation(), declaration.Name);
}
var printMembers = addPrintMembersMethod(membersSoFar);
addToStringMethod(printMembers);
memberSignatures.Free();
fieldsByName.Free();
memberNames.Free();
// Synthesizing non-readonly properties in struct would require changing readonly logic for PrintMembers method synthesis
Debug.Assert(isRecordClass || !members.Any(m => m is PropertySymbol { GetMethod.IsEffectivelyReadOnly: false }));
// We put synthesized record members first so that errors about conflicts show up on user-defined members rather than all
// going to the record declaration
members.AddRange(membersSoFar);
builder.SetNonTypeMembers(members);
return;
void addDeconstruct(SynthesizedPrimaryConstructor ctor, ImmutableArray<Symbol> positionalMembers)
{
Debug.Assert(positionalMembers.All(p => p is PropertySymbol or FieldSymbol));
var targetMethod = new SignatureOnlyMethodSymbol(
WellKnownMemberNames.DeconstructMethodName,
this,
MethodKind.Ordinary,
Cci.CallingConvention.HasThis,
ImmutableArray<TypeParameterSymbol>.Empty,
ctor.Parameters.SelectAsArray<ParameterSymbol, ParameterSymbol>(param => new SignatureOnlyParameterSymbol(param.TypeWithAnnotations,
ImmutableArray<CustomModifier>.Empty,
isParamsArray: false,
isParamsCollection: false,
RefKind.Out
)),
RefKind.None,
isInitOnly: false,
isStatic: false,
TypeWithAnnotations.Create(compilation.GetSpecialType(SpecialType.System_Void)),
ImmutableArray<CustomModifier>.Empty,
ImmutableArray<MethodSymbol>.Empty);
if (!memberSignatures.TryGetValue(targetMethod, out Symbol? existingDeconstructMethod))
{
members.Add(new SynthesizedRecordDeconstruct(this, ctor, positionalMembers, memberOffset: members.Count));
}
else
{
var deconstruct = (MethodSymbol)existingDeconstructMethod;
if (deconstruct.DeclaredAccessibility != Accessibility.Public)
{
diagnostics.Add(ErrorCode.ERR_NonPublicAPIInRecord, deconstruct.GetFirstLocation(), deconstruct);
}
if (deconstruct.ReturnType.SpecialType != SpecialType.System_Void && !deconstruct.ReturnType.IsErrorType())
{
diagnostics.Add(ErrorCode.ERR_SignatureMismatchInRecord, deconstruct.GetFirstLocation(), deconstruct, targetMethod.ReturnType);
}
if (deconstruct.IsStatic)
{
diagnostics.Add(ErrorCode.ERR_StaticAPIInRecord, deconstruct.GetFirstLocation(), deconstruct);
}
}
}
void addCopyCtor(bool primaryAndCopyCtorAmbiguity)
{
Debug.Assert(isRecordClass);
var targetMethod = new SignatureOnlyMethodSymbol(
WellKnownMemberNames.InstanceConstructorName,
this,
MethodKind.Constructor,
Cci.CallingConvention.HasThis,
ImmutableArray<TypeParameterSymbol>.Empty,
ImmutableArray.Create<ParameterSymbol>(new SignatureOnlyParameterSymbol(
TypeWithAnnotations.Create(this),
ImmutableArray<CustomModifier>.Empty,
isParamsArray: false,
isParamsCollection: false,
RefKind.None
)),
RefKind.None,
isInitOnly: false,
isStatic: false,
TypeWithAnnotations.Create(compilation.GetSpecialType(SpecialType.System_Void)),
ImmutableArray<CustomModifier>.Empty,
ImmutableArray<MethodSymbol>.Empty);
if (!memberSignatures.TryGetValue(targetMethod, out Symbol? existingConstructor))
{
var copyCtor = new SynthesizedRecordCopyCtor(this, memberOffset: members.Count);
members.Add(copyCtor);
if (primaryAndCopyCtorAmbiguity)
{
diagnostics.Add(ErrorCode.ERR_RecordAmbigCtor, copyCtor.GetFirstLocation());
}
}
else
{
var constructor = (MethodSymbol)existingConstructor;
if (!this.IsSealed && (constructor.DeclaredAccessibility != Accessibility.Public && constructor.DeclaredAccessibility != Accessibility.Protected))
{
diagnostics.Add(ErrorCode.ERR_CopyConstructorWrongAccessibility, constructor.GetFirstLocation(), constructor);
}
}
}
void addCloneMethod()
{
Debug.Assert(isRecordClass);
members.Add(new SynthesizedRecordClone(this, memberOffset: members.Count));
}
MethodSymbol addPrintMembersMethod(IEnumerable<Symbol> userDefinedMembers)
{
var targetMethod = new SignatureOnlyMethodSymbol(
WellKnownMemberNames.PrintMembersMethodName,
this,
MethodKind.Ordinary,
Cci.CallingConvention.HasThis,
ImmutableArray<TypeParameterSymbol>.Empty,
ImmutableArray.Create<ParameterSymbol>(new SignatureOnlyParameterSymbol(
TypeWithAnnotations.Create(compilation.GetWellKnownType(WellKnownType.System_Text_StringBuilder)),
ImmutableArray<CustomModifier>.Empty,
isParamsArray: false,
isParamsCollection: false,
RefKind.None)),
RefKind.None,
isInitOnly: false,
isStatic: false,
returnType: TypeWithAnnotations.Create(compilation.GetSpecialType(SpecialType.System_Boolean)),
refCustomModifiers: ImmutableArray<CustomModifier>.Empty,
explicitInterfaceImplementations: ImmutableArray<MethodSymbol>.Empty);
MethodSymbol printMembersMethod;
if (!memberSignatures.TryGetValue(targetMethod, out Symbol? existingPrintMembersMethod))
{
printMembersMethod = new SynthesizedRecordPrintMembers(this, userDefinedMembers, memberOffset: members.Count);
members.Add(printMembersMethod);
}
else
{
printMembersMethod = (MethodSymbol)existingPrintMembersMethod;
if (!isRecordClass || (this.IsSealed && this.BaseTypeNoUseSiteDiagnostics.IsObjectType()))
{
if (printMembersMethod.DeclaredAccessibility != Accessibility.Private)
{
diagnostics.Add(ErrorCode.ERR_NonPrivateAPIInRecord, printMembersMethod.GetFirstLocation(), printMembersMethod);
}
}
else if (printMembersMethod.DeclaredAccessibility != Accessibility.Protected)
{
diagnostics.Add(ErrorCode.ERR_NonProtectedAPIInRecord, printMembersMethod.GetFirstLocation(), printMembersMethod);
}
if (!printMembersMethod.ReturnType.Equals(targetMethod.ReturnType, TypeCompareKind.AllIgnoreOptions))
{
if (!printMembersMethod.ReturnType.IsErrorType())
{
diagnostics.Add(ErrorCode.ERR_SignatureMismatchInRecord, printMembersMethod.GetFirstLocation(), printMembersMethod, targetMethod.ReturnType);
}
}
else if (isRecordClass)
{
SynthesizedRecordPrintMembers.VerifyOverridesPrintMembersFromBase(printMembersMethod, diagnostics);
}
reportStaticOrNotOverridableAPIInRecord(printMembersMethod, diagnostics);
}
return printMembersMethod;
}
void addToStringMethod(MethodSymbol printMethod)
{
var targetMethod = new SignatureOnlyMethodSymbol(
WellKnownMemberNames.ObjectToString,
this,
MethodKind.Ordinary,
Cci.CallingConvention.HasThis,
ImmutableArray<TypeParameterSymbol>.Empty,
ImmutableArray<ParameterSymbol>.Empty,
RefKind.None,
isInitOnly: false,
isStatic: false,
returnType: TypeWithAnnotations.Create(compilation.GetSpecialType(SpecialType.System_String)),
refCustomModifiers: ImmutableArray<CustomModifier>.Empty,
explicitInterfaceImplementations: ImmutableArray<MethodSymbol>.Empty);
var baseToStringMethod = getBaseToStringMethod();
if (baseToStringMethod is { IsSealed: true })
{
if (baseToStringMethod.ContainingModule != this.ContainingModule && !this.DeclaringCompilation.IsFeatureEnabled(MessageID.IDS_FeatureSealedToStringInRecord))
{
var languageVersion = ((CSharpParseOptions)this.GetFirstLocation().SourceTree!.Options).LanguageVersion;
var requiredVersion = MessageID.IDS_FeatureSealedToStringInRecord.RequiredVersion();
diagnostics.Add(
ErrorCode.ERR_InheritingFromRecordWithSealedToString,
this.GetFirstLocation(),
languageVersion.ToDisplayString(),
new CSharpRequiredLanguageVersion(requiredVersion));
}
}
else
{
if (!memberSignatures.TryGetValue(targetMethod, out Symbol? existingToStringMethod))
{
var toStringMethod = new SynthesizedRecordToString(
this,
printMethod,
memberOffset: members.Count);
members.Add(toStringMethod);
}
else
{
var toStringMethod = (MethodSymbol)existingToStringMethod;
if (!SynthesizedRecordObjectMethod.VerifyOverridesMethodFromObject(toStringMethod, SpecialMember.System_Object__ToString, diagnostics) && toStringMethod.IsSealed && !IsSealed)
{
MessageID.IDS_FeatureSealedToStringInRecord.CheckFeatureAvailability(
diagnostics,
this.DeclaringCompilation,
toStringMethod.GetFirstLocation());
}
}
}
MethodSymbol? getBaseToStringMethod()
{
var objectToString = this.DeclaringCompilation.GetSpecialTypeMember(SpecialMember.System_Object__ToString);
var currentBaseType = this.BaseTypeNoUseSiteDiagnostics;
while (currentBaseType is not null)
{
foreach (var member in currentBaseType.GetSimpleNonTypeMembers(WellKnownMemberNames.ObjectToString))
{
if (member is not MethodSymbol method)
continue;
if (method.GetLeastOverriddenMethod(null) == objectToString)
return method;
}
currentBaseType = currentBaseType.BaseTypeNoUseSiteDiagnostics;
}
return null;
}
}
ImmutableArray<Symbol> addProperties(ImmutableArray<ParameterSymbol> recordParameters)
{
var existingOrAddedMembers = ArrayBuilder<Symbol>.GetInstance(recordParameters.Length);
int addedCount = 0;
foreach (ParameterSymbol param in recordParameters)
{
bool isInherited = false;
var syntax = param.GetNonNullSyntaxNode();
var targetProperty = new SignatureOnlyPropertySymbol(param.Name,
this,
ImmutableArray<ParameterSymbol>.Empty,
RefKind.None,
param.TypeWithAnnotations,
ImmutableArray<CustomModifier>.Empty,
isStatic: false,
ImmutableArray<PropertySymbol>.Empty);
if (!memberSignatures.TryGetValue(targetProperty, out var existingMember)
&& !fieldsByName.TryGetValue(param.Name, out existingMember))
{
existingMember = OverriddenOrHiddenMembersHelpers.FindFirstHiddenMemberIfAny(targetProperty, memberIsFromSomeCompilation: true);
isInherited = true;
}
// There should be an error if we picked a member that is hidden
// This will be fixed in C# 9 as part of 16.10. Tracked by https://github.com/dotnet/roslyn/issues/52630
if (existingMember is null)
{
addProperty(new SynthesizedRecordPropertySymbol(this, syntax, param, isOverride: false, diagnostics));
}
else if (existingMember is FieldSymbol { IsStatic: false } field
&& field.TypeWithAnnotations.Equals(param.TypeWithAnnotations, TypeCompareKind.AllIgnoreOptions))
{
Binder.CheckFeatureAvailability(syntax, MessageID.IDS_FeaturePositionalFieldsInRecords, diagnostics);
if (!isInherited || checkMemberNotHidden(field, param))
{
existingOrAddedMembers.Add(field);
}
}
else if (existingMember is PropertySymbol { IsStatic: false, GetMethod: { } } prop
&& prop.TypeWithAnnotations.Equals(param.TypeWithAnnotations, TypeCompareKind.AllIgnoreOptions))
{
// There already exists a member corresponding to the candidate synthesized property.
if (isInherited && prop.IsAbstract)
{
addProperty(new SynthesizedRecordPropertySymbol(this, syntax, param, isOverride: true, diagnostics));
}
else if (!isInherited || checkMemberNotHidden(prop, param))
{
// Deconstruct() is specified to simply assign from this property to the corresponding out parameter.
existingOrAddedMembers.Add(prop);
}
}
else
{
diagnostics.Add(ErrorCode.ERR_BadRecordMemberForPositionalParameter,
param.GetFirstLocation(),
new FormattedSymbol(existingMember, SymbolDisplayFormat.CSharpErrorMessageFormat.WithMemberOptions(SymbolDisplayMemberOptions.IncludeContainingType)),
param.TypeWithAnnotations,
param.Name);
}
void addProperty(SynthesizedRecordPropertySymbol property)
{
existingOrAddedMembers.Add(property);
members.Add(property);
Debug.Assert(property.GetMethod is object);
Debug.Assert(property.SetMethod is object);
members.Add(property.GetMethod);
members.Add(property.SetMethod);
var backingField = property.DeclaredBackingField;
Debug.Assert(backingField is object);
members.Add(backingField);
builder.AddInstanceInitializerForPositionalMembers(new FieldOrPropertyInitializer(property.BackingField, paramList.Parameters[param.Ordinal]));
addedCount++;
}
}
return existingOrAddedMembers.ToImmutableAndFree();
bool checkMemberNotHidden(Symbol symbol, ParameterSymbol param)
{
if (memberNames.Contains(symbol.Name) || this.GetTypeMembersDictionary().ContainsKey(symbol.Name.AsMemory()))
{
diagnostics.Add(ErrorCode.ERR_HiddenPositionalMember, param.GetFirstLocation(), symbol);
return false;
}
return true;
}
}
void addObjectEquals(MethodSymbol thisEquals)
{
members.Add(new SynthesizedRecordObjEquals(this, thisEquals, memberOffset: members.Count));
}
MethodSymbol addGetHashCode(PropertySymbol? equalityContract)
{
var targetMethod = new SignatureOnlyMethodSymbol(
WellKnownMemberNames.ObjectGetHashCode,
this,
MethodKind.Ordinary,
Cci.CallingConvention.HasThis,
ImmutableArray<TypeParameterSymbol>.Empty,
ImmutableArray<ParameterSymbol>.Empty,
RefKind.None,
isInitOnly: false,
isStatic: false,
TypeWithAnnotations.Create(compilation.GetSpecialType(SpecialType.System_Int32)),
ImmutableArray<CustomModifier>.Empty,
ImmutableArray<MethodSymbol>.Empty);
MethodSymbol getHashCode;
if (!memberSignatures.TryGetValue(targetMethod, out Symbol? existingHashCodeMethod))
{
getHashCode = new SynthesizedRecordGetHashCode(this, equalityContract, memberOffset: members.Count);
members.Add(getHashCode);
}
else
{
getHashCode = (MethodSymbol)existingHashCodeMethod;
if (!SynthesizedRecordObjectMethod.VerifyOverridesMethodFromObject(getHashCode, SpecialMember.System_Object__GetHashCode, diagnostics) && getHashCode.IsSealed && !IsSealed)
{
diagnostics.Add(ErrorCode.ERR_SealedAPIInRecord, getHashCode.GetFirstLocation(), getHashCode);
}
}
return getHashCode;
}
PropertySymbol addEqualityContract()
{
Debug.Assert(isRecordClass);
var targetProperty = new SignatureOnlyPropertySymbol(SynthesizedRecordEqualityContractProperty.PropertyName,
this,
ImmutableArray<ParameterSymbol>.Empty,
RefKind.None,
TypeWithAnnotations.Create(compilation.GetWellKnownType(WellKnownType.System_Type)),
ImmutableArray<CustomModifier>.Empty,
isStatic: false,
ImmutableArray<PropertySymbol>.Empty);
PropertySymbol equalityContract;
if (!memberSignatures.TryGetValue(targetProperty, out Symbol? existingEqualityContractProperty))
{
equalityContract = new SynthesizedRecordEqualityContractProperty(this, diagnostics);
members.Add(equalityContract);
members.Add(equalityContract.GetMethod);
}
else
{
equalityContract = (PropertySymbol)existingEqualityContractProperty;
if (this.IsSealed && this.BaseTypeNoUseSiteDiagnostics.IsObjectType())
{
if (equalityContract.DeclaredAccessibility != Accessibility.Private)
{
diagnostics.Add(ErrorCode.ERR_NonPrivateAPIInRecord, equalityContract.GetFirstLocation(), equalityContract);
}
}
else if (equalityContract.DeclaredAccessibility != Accessibility.Protected)
{
diagnostics.Add(ErrorCode.ERR_NonProtectedAPIInRecord, equalityContract.GetFirstLocation(), equalityContract);
}
if (!equalityContract.Type.Equals(targetProperty.Type, TypeCompareKind.AllIgnoreOptions))
{
if (!equalityContract.Type.IsErrorType())
{
diagnostics.Add(ErrorCode.ERR_SignatureMismatchInRecord, equalityContract.GetFirstLocation(), equalityContract, targetProperty.Type);
}
}
else
{
SynthesizedRecordEqualityContractProperty.VerifyOverridesEqualityContractFromBase(equalityContract, diagnostics);
}
if (equalityContract.GetMethod is null)
{
diagnostics.Add(ErrorCode.ERR_EqualityContractRequiresGetter, equalityContract.GetFirstLocation(), equalityContract);
}
reportStaticOrNotOverridableAPIInRecord(equalityContract, diagnostics);
}
return equalityContract;
}
MethodSymbol addThisEquals(PropertySymbol? equalityContract)
{
var targetMethod = new SignatureOnlyMethodSymbol(
WellKnownMemberNames.ObjectEquals,
this,
MethodKind.Ordinary,
Cci.CallingConvention.HasThis,
ImmutableArray<TypeParameterSymbol>.Empty,
ImmutableArray.Create<ParameterSymbol>(new SignatureOnlyParameterSymbol(
TypeWithAnnotations.Create(this),
ImmutableArray<CustomModifier>.Empty,
isParamsArray: false,
isParamsCollection: false,
RefKind.None
)),
RefKind.None,
isInitOnly: false,
isStatic: false,
TypeWithAnnotations.Create(compilation.GetSpecialType(SpecialType.System_Boolean)),
ImmutableArray<CustomModifier>.Empty,
ImmutableArray<MethodSymbol>.Empty);
MethodSymbol thisEquals;
if (!memberSignatures.TryGetValue(targetMethod, out Symbol? existingEqualsMethod))
{
thisEquals = new SynthesizedRecordEquals(this, equalityContract, memberOffset: members.Count);
members.Add(thisEquals);
}
else
{
thisEquals = (MethodSymbol)existingEqualsMethod;
if (thisEquals.DeclaredAccessibility != Accessibility.Public)
{
diagnostics.Add(ErrorCode.ERR_NonPublicAPIInRecord, thisEquals.GetFirstLocation(), thisEquals);
}
if (thisEquals.ReturnType.SpecialType != SpecialType.System_Boolean && !thisEquals.ReturnType.IsErrorType())
{
diagnostics.Add(ErrorCode.ERR_SignatureMismatchInRecord, thisEquals.GetFirstLocation(), thisEquals, targetMethod.ReturnType);
}
reportStaticOrNotOverridableAPIInRecord(thisEquals, diagnostics);
}
return thisEquals;
}
void reportStaticOrNotOverridableAPIInRecord(Symbol symbol, BindingDiagnosticBag diagnostics)
{
if (isRecordClass &&
!IsSealed &&
((!symbol.IsAbstract && !symbol.IsVirtual && !symbol.IsOverride) || symbol.IsSealed))
{
diagnostics.Add(ErrorCode.ERR_NotOverridableAPIInRecord, symbol.GetFirstLocation(), symbol);
}
else if (symbol.IsStatic)
{
diagnostics.Add(ErrorCode.ERR_StaticAPIInRecord, symbol.GetFirstLocation(), symbol);
}
}
void addBaseEquals()
{
Debug.Assert(isRecordClass);
if (!BaseTypeNoUseSiteDiagnostics.IsObjectType())
{
members.Add(new SynthesizedRecordBaseEquals(this, memberOffset: members.Count));
}
}
void addEqualityOperators()
{
members.Add(new SynthesizedRecordEqualityOperator(this, memberOffset: members.Count, diagnostics));
members.Add(new SynthesizedRecordInequalityOperator(this, memberOffset: members.Count, diagnostics));
}
}
private void AddSynthesizedConstructorsIfNecessary(MembersAndInitializersBuilder builder, DeclaredMembersAndInitializers declaredMembersAndInitializers, BindingDiagnosticBag diagnostics)
{
//we're not calling the helpers on NamedTypeSymbol base, because those call
//GetMembers and we're inside a GetMembers call ourselves (i.e. stack overflow)
var hasInstanceConstructor = false;
var hasParameterlessInstanceConstructor = false;
var hasStaticConstructor = false;
// CONSIDER: if this traversal becomes a bottleneck, the flags could be made outputs of the
// dictionary construction process. For now, this is more encapsulated.
var membersSoFar = builder.GetNonTypeMembers(declaredMembersAndInitializers);
foreach (var member in membersSoFar)
{
if (member.Kind == SymbolKind.Method)
{
var method = (MethodSymbol)member;
switch (method.MethodKind)
{
case MethodKind.Constructor:
// Ignore the record copy constructor
if (!IsRecord ||
!(SynthesizedRecordCopyCtor.HasCopyConstructorSignature(method) && method is not SynthesizedPrimaryConstructor))
{
hasInstanceConstructor = true;
hasParameterlessInstanceConstructor = hasParameterlessInstanceConstructor || method.ParameterCount == 0;
}
break;
case MethodKind.StaticConstructor:
hasStaticConstructor = true;
break;
}
}
//kick out early if we've seen everything we're looking for
if (hasInstanceConstructor &&
hasParameterlessInstanceConstructor &&
hasStaticConstructor)
{
break;
}
}
// NOTE: Per section 11.3.8 of the spec, "every struct implicitly has a parameterless instance constructor".
// We won't insert a parameterless constructor for a struct if there already is one.
// The synthesized constructor will only be emitted if there are field initializers, but it should be in the symbol table.
if ((!hasParameterlessInstanceConstructor && this.IsStructType()) ||
(!hasInstanceConstructor && !this.IsStatic && !this.IsInterface))
{
builder.AddNonTypeMember((this.TypeKind == TypeKind.Submission) ?
new SynthesizedSubmissionConstructor(this, diagnostics) :
new SynthesizedInstanceConstructor(this),
declaredMembersAndInitializers);
}
// constants don't count, since they do not exist as fields at runtime
// NOTE: even for decimal constants (which require field initializers),
// we do not create .cctor here since a static constructor implicitly created for a decimal
// should not appear in the list returned by public API like GetMembers().
if (!hasStaticConstructor && hasNonConstantInitializer(declaredMembersAndInitializers.StaticInitializers))
{
// Note: we don't have to put anything in the method - the binder will
// do that when processing field initializers.
builder.AddNonTypeMember(new SynthesizedStaticConstructor(this), declaredMembersAndInitializers);
}
if (this.IsScriptClass)
{
var scriptInitializer = new SynthesizedInteractiveInitializerMethod(this, diagnostics);
builder.AddNonTypeMember(scriptInitializer, declaredMembersAndInitializers);
var scriptEntryPoint = SynthesizedEntryPointSymbol.Create(scriptInitializer, diagnostics);
builder.AddNonTypeMember(scriptEntryPoint, declaredMembersAndInitializers);
}
static bool hasNonConstantInitializer(ImmutableArray<ImmutableArray<FieldOrPropertyInitializer>> initializers)
{
return initializers.Any(static siblings => siblings.Any(static initializer => !initializer.FieldOpt.IsConst));
}
}
private void AddSynthesizedTupleMembersIfNecessary(MembersAndInitializersBuilder builder, DeclaredMembersAndInitializers declaredMembersAndInitializers)
{
if (!this.IsTupleType)
{
return;
}
var synthesizedMembers = this.MakeSynthesizedTupleMembers(declaredMembersAndInitializers.NonTypeMembers);
if (synthesizedMembers is null)
{
return;
}
foreach (var synthesizedMember in synthesizedMembers)
{
builder.AddNonTypeMember(synthesizedMember, declaredMembersAndInitializers);
}
synthesizedMembers.Free();
}
private void AddNonTypeMembers(
DeclaredMembersAndInitializersBuilder builder,
SyntaxList<MemberDeclarationSyntax> members,
BindingDiagnosticBag diagnostics)
{
if (members.Count == 0)
{
return;
}
var firstMember = members[0];
var bodyBinder = this.GetBinder(firstMember);
ArrayBuilder<FieldOrPropertyInitializer>? staticInitializers = null;
ArrayBuilder<FieldOrPropertyInitializer>? instanceInitializers = null;
var compilation = DeclaringCompilation;
foreach (var m in members)
{
if (_lazyMembersAndInitializers != null)
{
// membersAndInitializers is already computed. no point to continue.
return;
}
bool reportMisplacedGlobalCode = !m.HasErrors;
switch (m.Kind())
{
case SyntaxKind.FieldDeclaration:
{
var fieldSyntax = (FieldDeclarationSyntax)m;
// Lang version check for ref-fields is done inside SourceMemberFieldSymbol;
_ = fieldSyntax.Declaration.Type.SkipScoped(out _).SkipRefInField(out var refKind);
if (IsImplicitClass && reportMisplacedGlobalCode)
{
diagnostics.Add(ErrorCode.ERR_NamespaceUnexpected,
new SourceLocation(fieldSyntax.Declaration.Variables.First().Identifier));
}
bool modifierErrors;
var modifiers = SourceMemberFieldSymbol.MakeModifiers(this, fieldSyntax.Declaration.Variables[0].Identifier, fieldSyntax.Modifiers, isRefField: refKind != RefKind.None, diagnostics, out modifierErrors);
foreach (var variable in fieldSyntax.Declaration.Variables)
{
var fieldSymbol = (modifiers & DeclarationModifiers.Fixed) == 0
? new SourceMemberFieldSymbolFromDeclarator(this, variable, modifiers, modifierErrors, diagnostics)
: new SourceFixedFieldSymbol(this, variable, modifiers, modifierErrors, diagnostics);
builder.NonTypeMembers.Add(fieldSymbol);
// All fields are included in the nullable context for constructors and initializers, even fields without
// initializers, to ensure warnings are reported for uninitialized non-nullable fields in NullableWalker.
builder.UpdateIsNullableEnabledForConstructorsAndFields(useStatic: fieldSymbol.IsStatic, compilation, variable);
if (IsScriptClass)
{
// also gather expression-declared variables from the bracketed argument lists and the initializers
ExpressionFieldFinder.FindExpressionVariables(builder.NonTypeMembers, variable, this,
DeclarationModifiers.Private | (modifiers & DeclarationModifiers.Static),
fieldSymbol);
}
if (variable.Initializer != null)
{
if (fieldSymbol.IsStatic)
{
AddInitializer(ref staticInitializers, fieldSymbol, variable.Initializer);
}
else
{
AddInitializer(ref instanceInitializers, fieldSymbol, variable.Initializer);
}
}
}
}
break;
case SyntaxKind.MethodDeclaration:
{
var methodSyntax = (MethodDeclarationSyntax)m;
if (IsImplicitClass && reportMisplacedGlobalCode)
{
diagnostics.Add(ErrorCode.ERR_NamespaceUnexpected,
new SourceLocation(methodSyntax.Identifier));
}
var method = SourceOrdinaryMethodSymbol.CreateMethodSymbol(this, bodyBinder, methodSyntax, compilation.IsNullableAnalysisEnabledIn(methodSyntax), diagnostics);
builder.NonTypeMembers.Add(method);
}
break;
case SyntaxKind.ConstructorDeclaration:
{
var constructorSyntax = (ConstructorDeclarationSyntax)m;
if (IsImplicitClass && reportMisplacedGlobalCode)
{
diagnostics.Add(ErrorCode.ERR_NamespaceUnexpected,
new SourceLocation(constructorSyntax.Identifier));
}
bool isNullableEnabled = compilation.IsNullableAnalysisEnabledIn(constructorSyntax);
var constructor = SourceConstructorSymbol.CreateConstructorSymbol(this, constructorSyntax, isNullableEnabled, diagnostics);
builder.NonTypeMembers.Add(constructor);
if (constructorSyntax.Initializer?.Kind() != SyntaxKind.ThisConstructorInitializer)
{
builder.UpdateIsNullableEnabledForConstructorsAndFields(useStatic: constructor.IsStatic, isNullableEnabled);
}
}
break;
case SyntaxKind.DestructorDeclaration:
{
var destructorSyntax = (DestructorDeclarationSyntax)m;
if (IsImplicitClass && reportMisplacedGlobalCode)
{
diagnostics.Add(ErrorCode.ERR_NamespaceUnexpected,
new SourceLocation(destructorSyntax.Identifier));
}
// CONSIDER: if this doesn't (directly or indirectly) override object.Finalize, the
// runtime won't consider it a finalizer and it will not be marked as a destructor
// when it is loaded from metadata. Perhaps we should just treat it as an Ordinary
// method in such cases?
var destructor = new SourceDestructorSymbol(this, destructorSyntax, compilation.IsNullableAnalysisEnabledIn(destructorSyntax), diagnostics);
builder.NonTypeMembers.Add(destructor);
}
break;
case SyntaxKind.PropertyDeclaration:
{
var propertySyntax = (PropertyDeclarationSyntax)m;
if (IsImplicitClass && reportMisplacedGlobalCode)
{
diagnostics.Add(ErrorCode.ERR_NamespaceUnexpected,
new SourceLocation(propertySyntax.Identifier));
}
var property = SourcePropertySymbol.Create(this, bodyBinder, propertySyntax, diagnostics);
builder.NonTypeMembers.Add(property);
AddAccessorIfAvailable(builder.NonTypeMembers, property.GetMethod);
AddAccessorIfAvailable(builder.NonTypeMembers, property.SetMethod);
FieldSymbol? backingField = property.DeclaredBackingField;
// TODO: can we leave this out of the member list?
// From the 10/12/11 design notes:
// In addition, we will change autoproperties to behavior in
// a similar manner and make the autoproperty fields private.
if (backingField is { })
{
builder.NonTypeMembers.Add(backingField);
builder.UpdateIsNullableEnabledForConstructorsAndFields(useStatic: backingField.IsStatic, compilation, propertySyntax);
var initializer = propertySyntax.Initializer;
if (initializer != null)
{
if (IsScriptClass)
{
// also gather expression-declared variables from the initializer
ExpressionFieldFinder.FindExpressionVariables(builder.NonTypeMembers,
initializer,
this,
DeclarationModifiers.Private | (property.IsStatic ? DeclarationModifiers.Static : 0),
backingField);
}
if (property.IsStatic)
{
AddInitializer(ref staticInitializers, backingField, initializer);
}
else
{
AddInitializer(ref instanceInitializers, backingField, initializer);
}
}
}
}
break;
case SyntaxKind.EventFieldDeclaration:
{
var eventFieldSyntax = (EventFieldDeclarationSyntax)m;
if (IsImplicitClass && reportMisplacedGlobalCode)
{
diagnostics.Add(
ErrorCode.ERR_NamespaceUnexpected,
new SourceLocation(eventFieldSyntax.Declaration.Variables.First().Identifier));
}
foreach (VariableDeclaratorSyntax declarator in eventFieldSyntax.Declaration.Variables)
{
SourceFieldLikeEventSymbol @event = new SourceFieldLikeEventSymbol(this, bodyBinder, eventFieldSyntax.Modifiers, declarator, diagnostics);
builder.NonTypeMembers.Add(@event);
FieldSymbol? associatedField = @event.AssociatedField;
if (IsScriptClass)
{
// also gather expression-declared variables from the bracketed argument lists and the initializers
ExpressionFieldFinder.FindExpressionVariables(builder.NonTypeMembers, declarator, this,
DeclarationModifiers.Private | (@event.IsStatic ? DeclarationModifiers.Static : 0),
associatedField);
}
if ((object?)associatedField != null)
{
// NOTE: specifically don't add the associated field to the members list
// (regard it as an implementation detail).
builder.UpdateIsNullableEnabledForConstructorsAndFields(useStatic: associatedField.IsStatic, compilation, declarator);
if (declarator.Initializer != null)
{
if (associatedField.IsStatic)
{
AddInitializer(ref staticInitializers, associatedField, declarator.Initializer);
}
else
{
AddInitializer(ref instanceInitializers, associatedField, declarator.Initializer);
}
}
}
Debug.Assert((object)@event.AddMethod != null);
Debug.Assert((object)@event.RemoveMethod != null);
AddAccessorIfAvailable(builder.NonTypeMembers, @event.AddMethod);
AddAccessorIfAvailable(builder.NonTypeMembers, @event.RemoveMethod);
}
}
break;
case SyntaxKind.EventDeclaration:
{
var eventSyntax = (EventDeclarationSyntax)m;
if (IsImplicitClass && reportMisplacedGlobalCode)
{
diagnostics.Add(ErrorCode.ERR_NamespaceUnexpected,
new SourceLocation(eventSyntax.Identifier));
}
var @event = new SourceCustomEventSymbol(this, bodyBinder, eventSyntax, diagnostics);
builder.NonTypeMembers.Add(@event);
AddAccessorIfAvailable(builder.NonTypeMembers, @event.AddMethod);
AddAccessorIfAvailable(builder.NonTypeMembers, @event.RemoveMethod);
Debug.Assert(@event.AssociatedField is null);
}
break;
case SyntaxKind.IndexerDeclaration:
{
var indexerSyntax = (IndexerDeclarationSyntax)m;
if (IsImplicitClass && reportMisplacedGlobalCode)
{
diagnostics.Add(ErrorCode.ERR_NamespaceUnexpected,
new SourceLocation(indexerSyntax.ThisKeyword));
}
var indexer = SourcePropertySymbol.Create(this, bodyBinder, indexerSyntax, diagnostics);
builder.HaveIndexers = true;
builder.NonTypeMembers.Add(indexer);
AddAccessorIfAvailable(builder.NonTypeMembers, indexer.GetMethod);
AddAccessorIfAvailable(builder.NonTypeMembers, indexer.SetMethod);
}
break;
case SyntaxKind.ConversionOperatorDeclaration:
{
var conversionOperatorSyntax = (ConversionOperatorDeclarationSyntax)m;
if (IsImplicitClass && reportMisplacedGlobalCode)
{
diagnostics.Add(ErrorCode.ERR_NamespaceUnexpected,
new SourceLocation(conversionOperatorSyntax.OperatorKeyword));
}
var method = SourceUserDefinedConversionSymbol.CreateUserDefinedConversionSymbol(
this, bodyBinder, conversionOperatorSyntax, compilation.IsNullableAnalysisEnabledIn(conversionOperatorSyntax), diagnostics);
builder.NonTypeMembers.Add(method);
}
break;
case SyntaxKind.OperatorDeclaration:
{
var operatorSyntax = (OperatorDeclarationSyntax)m;
if (IsImplicitClass && reportMisplacedGlobalCode)
{
diagnostics.Add(ErrorCode.ERR_NamespaceUnexpected,
new SourceLocation(operatorSyntax.OperatorKeyword));
}
var method = SourceUserDefinedOperatorSymbol.CreateUserDefinedOperatorSymbol(
this, bodyBinder, operatorSyntax, compilation.IsNullableAnalysisEnabledIn(operatorSyntax), diagnostics);
builder.NonTypeMembers.Add(method);
}
break;
case SyntaxKind.GlobalStatement:
{
var globalStatement = ((GlobalStatementSyntax)m).Statement;
if (IsScriptClass)
{
var innerStatement = globalStatement;
// drill into any LabeledStatements
while (innerStatement.Kind() == SyntaxKind.LabeledStatement)
{
innerStatement = ((LabeledStatementSyntax)innerStatement).Statement;
}
switch (innerStatement.Kind())
{
case SyntaxKind.LocalDeclarationStatement:
// We shouldn't reach this place, but field declarations preceded with a label end up here.
// This is tracked by https://github.com/dotnet/roslyn/issues/13712. Let's do our best for now.
var decl = (LocalDeclarationStatementSyntax)innerStatement;
foreach (var vdecl in decl.Declaration.Variables)
{
// also gather expression-declared variables from the bracketed argument lists and the initializers
ExpressionFieldFinder.FindExpressionVariables(builder.NonTypeMembers, vdecl, this, DeclarationModifiers.Private,
containingFieldOpt: null);
}
break;
case SyntaxKind.ExpressionStatement:
case SyntaxKind.IfStatement:
case SyntaxKind.YieldReturnStatement:
case SyntaxKind.ReturnStatement:
case SyntaxKind.ThrowStatement:
case SyntaxKind.SwitchStatement:
case SyntaxKind.LockStatement:
ExpressionFieldFinder.FindExpressionVariables(builder.NonTypeMembers,
innerStatement,
this,
DeclarationModifiers.Private,
containingFieldOpt: null);
break;
default:
// no other statement introduces variables into the enclosing scope
break;
}
AddInitializer(ref instanceInitializers, null, globalStatement);
}
else if (reportMisplacedGlobalCode && !SyntaxFacts.IsSimpleProgramTopLevelStatement((GlobalStatementSyntax)m))
{
diagnostics.Add(ErrorCode.ERR_GlobalStatement, new SourceLocation(globalStatement));
}
}
break;
default:
Debug.Assert(
SyntaxFacts.IsTypeDeclaration(m.Kind()) ||
m.Kind() is SyntaxKind.NamespaceDeclaration or
SyntaxKind.FileScopedNamespaceDeclaration or
SyntaxKind.IncompleteMember);
break;
}
}
AddInitializers(builder.InstanceInitializers, instanceInitializers);
AddInitializers(builder.StaticInitializers, staticInitializers);
}
private void AddAccessorIfAvailable(ArrayBuilder<Symbol> symbols, MethodSymbol? accessorOpt)
{
if (!(accessorOpt is null))
{
symbols.Add(accessorOpt);
}
}
internal override byte? GetLocalNullableContextValue()
{
byte? value;
if (!_flags.TryGetNullableContext(out value))
{
value = ComputeNullableContextValue();
_flags.SetNullableContext(value);
}
return value;
}
private byte? ComputeNullableContextValue()
{
var compilation = DeclaringCompilation;
if (!compilation.ShouldEmitNullableAttributes(this))
{
return null;
}
var builder = new MostCommonNullableValueBuilder();
var baseType = BaseTypeNoUseSiteDiagnostics;
if (baseType is object)
{
builder.AddValue(TypeWithAnnotations.Create(baseType));
}
foreach (var @interface in GetInterfacesToEmit())
{
builder.AddValue(TypeWithAnnotations.Create(@interface));
}
foreach (var typeParameter in TypeParameters)
{
typeParameter.GetCommonNullableValues(compilation, ref builder);
}
foreach (var member in GetMembersUnordered())
{
member.GetCommonNullableValues(compilation, ref builder);
}
// Not including lambdas or local functions.
return builder.MostCommonValue;
}
/// <summary>
/// Returns true if the overall nullable context is enabled for constructors and initializers.
/// </summary>
/// <param name="useStatic">Consider static constructor and fields rather than instance constructors and fields.</param>
internal bool IsNullableEnabledForConstructorsAndInitializers(bool useStatic)
{
var membersAndInitializers = GetMembersAndInitializers();
return useStatic ?
membersAndInitializers.IsNullableEnabledForStaticConstructorsAndFields :
membersAndInitializers.IsNullableEnabledForInstanceConstructorsAndFields;
}
internal override void AddSynthesizedAttributes(PEModuleBuilder moduleBuilder, ref ArrayBuilder<SynthesizedAttributeData> attributes)
{
base.AddSynthesizedAttributes(moduleBuilder, ref attributes);
var compilation = DeclaringCompilation;
NamedTypeSymbol baseType = this.BaseTypeNoUseSiteDiagnostics;
if (baseType is object)
{
if (baseType.ContainsDynamic())
{
AddSynthesizedAttribute(ref attributes, compilation.SynthesizeDynamicAttribute(baseType, customModifiersCount: 0));
}
if (compilation.ShouldEmitNativeIntegerAttributes(baseType))
{
AddSynthesizedAttribute(ref attributes, moduleBuilder.SynthesizeNativeIntegerAttribute(this, baseType));
}
if (baseType.ContainsTupleNames())
{
AddSynthesizedAttribute(ref attributes, compilation.SynthesizeTupleNamesAttribute(baseType));
}
}
if (compilation.ShouldEmitNullableAttributes(this))
{
if (ShouldEmitNullableContextValue(out byte nullableContextValue))
{
AddSynthesizedAttribute(ref attributes, moduleBuilder.SynthesizeNullableContextAttribute(this, nullableContextValue));
}
if (baseType is object)
{
AddSynthesizedAttribute(ref attributes, moduleBuilder.SynthesizeNullableAttributeIfNecessary(this, nullableContextValue, TypeWithAnnotations.Create(baseType)));
}
}
}
#endregion
#region Extension Methods
internal bool ContainsExtensionMethods
{
get
{
if (!_lazyContainsExtensionMethods.HasValue())
{
bool containsExtensionMethods = ((this.IsStatic && !this.IsGenericType) || this.IsScriptClass) && this.declaration.ContainsExtensionMethods;
_lazyContainsExtensionMethods = containsExtensionMethods.ToThreeState();
}
return _lazyContainsExtensionMethods.Value();
}
}
internal bool AnyMemberHasAttributes
{
get
{
if (!_lazyAnyMemberHasAttributes.HasValue())
{
bool anyMemberHasAttributes = this.declaration.AnyMemberHasAttributes;
_lazyAnyMemberHasAttributes = anyMemberHasAttributes.ToThreeState();
}
return _lazyAnyMemberHasAttributes.Value();
}
}
public override bool MightContainExtensionMethods
{
get
{
return this.ContainsExtensionMethods;
}
}
#endregion
internal void DiscoverInterceptors(ArrayBuilder<NamespaceOrTypeSymbol> toSearch)
{
foreach (var type in this.GetTypeMembers())
{
toSearch.Add(type);
}
if (!declaration.AnyMemberHasAttributes)
{
return;
}
foreach (var member in this.GetMembersUnordered())
{
if (member is MethodSymbol { MethodKind: MethodKind.Ordinary })
{
// force binding attributes and populating compilation-level structures
member.GetAttributes();
}
}
}
public sealed override NamedTypeSymbol ConstructedFrom
{
get { return this; }
}
internal class SynthesizedExplicitImplementations
{
public static readonly SynthesizedExplicitImplementations Empty = new SynthesizedExplicitImplementations(ImmutableArray<SynthesizedExplicitImplementationForwardingMethod>.Empty,
ImmutableArray<(MethodSymbol Body, MethodSymbol Implemented)>.Empty);
public readonly ImmutableArray<SynthesizedExplicitImplementationForwardingMethod> ForwardingMethods;
public readonly ImmutableArray<(MethodSymbol Body, MethodSymbol Implemented)> MethodImpls;
private SynthesizedExplicitImplementations(
ImmutableArray<SynthesizedExplicitImplementationForwardingMethod> forwardingMethods,
ImmutableArray<(MethodSymbol Body, MethodSymbol Implemented)> methodImpls)
{
ForwardingMethods = forwardingMethods.NullToEmpty();
MethodImpls = methodImpls.NullToEmpty();
}
internal static SynthesizedExplicitImplementations Create(
ImmutableArray<SynthesizedExplicitImplementationForwardingMethod> forwardingMethods,
ImmutableArray<(MethodSymbol Body, MethodSymbol Implemented)> methodImpls)
{
if (forwardingMethods.IsDefaultOrEmpty && methodImpls.IsDefaultOrEmpty)
{
return Empty;
}
return new SynthesizedExplicitImplementations(forwardingMethods, methodImpls);
}
}
}
}
|