5 instantiations of FastTreeRegressionTrainer
Microsoft.ML.FastTree (5)
FastTreeArguments.cs (1)
151ITrainer IComponentFactory<ITrainer>.CreateComponent(IHostEnvironment env) => new FastTreeRegressionTrainer(env, this);
FastTreeRegression.cs (1)
542() => new FastTreeRegressionTrainer(host, input),
TreeEnsembleFeaturizationEstimator.cs (1)
287var trainer = new FastTreeRegressionTrainer(Env, _trainerOptions);
TreeTrainersCatalog.cs (2)
47return new FastTreeRegressionTrainer(env, labelColumnName, featureColumnName, exampleWeightColumnName, numberOfLeaves, numberOfTrees, minimumExampleCountPerLeaf, learningRate); 69return new FastTreeRegressionTrainer(env, options);
48 references to FastTreeRegressionTrainer
Microsoft.ML.AutoML (3)
API\RegressionExperiment.cs (1)
86/// See <see cref="FastTreeRegressionTrainer"/>.
SweepableEstimator\Estimators\FastTree.cs (1)
36var option = new FastTreeRegressionTrainer.Options()
TrainerExtensions\RegressionTrainerExtensions.cs (1)
47var options = TrainerExtensionUtil.CreateOptions<FastTreeRegressionTrainer.Options>(sweepParams, columnInfo.LabelColumnName);
Microsoft.ML.FastTree (32)
FastTreeArguments.cs (2)
14[assembly: EntryPointModule(typeof(FastTreeRegressionTrainer.Options))] 115/// Options for the <see cref="FastTreeRegressionTrainer"/> as used in
FastTreeRanking.cs (1)
65/// <seealso cref="TreeExtensions.FastTree(RegressionCatalog.RegressionTrainers, FastTreeRegressionTrainer.Options)"/>
FastTreeRegression.cs (16)
14[assembly: LoadableClass(FastTreeRegressionTrainer.Summary, typeof(FastTreeRegressionTrainer), typeof(FastTreeRegressionTrainer.Options), 16FastTreeRegressionTrainer.UserNameValue, 17FastTreeRegressionTrainer.LoadNameValue, 18FastTreeRegressionTrainer.ShortName, 56/// <seealso cref="TreeExtensions.FastTree(RegressionCatalog.RegressionTrainers, FastTreeRegressionTrainer.Options)"/> 59: BoostingFastTreeTrainerBase<FastTreeRegressionTrainer.Options, RegressionPredictionTransformer<FastTreeRegressionModelParameters>, FastTreeRegressionModelParameters> 76/// Initializes a new instance of <see cref="FastTreeRegressionTrainer"/> 99/// Initializes a new instance of <see cref="FastTreeRegressionTrainer"/> by using the <see cref="Options"/> class. 195/// Trains a <see cref="FastTreeRegressionTrainer"/> using both training and validation data, returns 531Desc = FastTreeRegressionTrainer.Summary, 532UserName = FastTreeRegressionTrainer.UserNameValue, 533ShortName = FastTreeRegressionTrainer.ShortName)] 534public static CommonOutputs.RegressionOutput TrainRegression(IHostEnvironment env, FastTreeRegressionTrainer.Options input) 541return TrainerEntryPointsUtils.Train<FastTreeRegressionTrainer.Options, CommonOutputs.RegressionOutput>(host, input,
GamRegression.cs (1)
114return new FastTreeRegressionTrainer.ObjectiveImpl(TrainSet, GamTrainerOptions);
RandomForestRegression.cs (1)
526_labels = FastTreeRegressionTrainer.GetDatasetRegressionLabels(trainData);
Training\Test.cs (1)
527_labels = FastTreeRegressionTrainer.GetDatasetRegressionLabels(scoreTracker.Dataset);
TreeEnsembleFeaturizationEstimator.cs (4)
266private readonly FastTreeRegressionTrainer.Options _trainerOptions; 274/// The configuration of <see cref="FastTreeRegressionTrainer"/> used to train the underlying <see cref="TreeEnsembleModelParameters"/>. 276public FastTreeRegressionTrainer.Options TrainerOptions; 287var trainer = new FastTreeRegressionTrainer(Env, _trainerOptions);
TreeTrainersCatalog.cs (6)
19/// Create <see cref="FastTreeRegressionTrainer"/>, which predicts a target using a decision tree regression model. 36public static FastTreeRegressionTrainer FastTree(this RegressionCatalog.RegressionTrainers catalog, 51/// Create <see cref="FastTreeRegressionTrainer"/> with advanced options, which predicts a target using a decision tree regression model. 62public static FastTreeRegressionTrainer FastTree(this RegressionCatalog.RegressionTrainers catalog, 63FastTreeRegressionTrainer.Options options) 483/// Create <see cref="FastTreeRegressionFeaturizationEstimator"/>, which uses <see cref="FastTreeRegressionTrainer"/> to train <see cref="TreeEnsembleModelParameters"/> to create tree-based features.
Microsoft.ML.IntegrationTests (4)
ModelFiles.cs (2)
50new FastTreeRegressionTrainer.Options { NumberOfThreads = 1, NumberOfTrees = 10 })); 97new FastTreeRegressionTrainer.Options { NumberOfThreads = 1, NumberOfTrees = 10 }));
ONNX.cs (1)
44new FastTreeRegressionTrainer.Options { NumberOfThreads = 1, NumberOfTrees = 10 }));
Validation.cs (1)
121var trainedModel = mlContext.Regression.Trainers.FastTree(new FastTreeRegressionTrainer.Options
Microsoft.ML.Samples (4)
Dynamic\Trainers\Regression\FastTree.cs (1)
30var pipeline = mlContext.Regression.Trainers.FastTree(
Dynamic\Trainers\Regression\FastTreeWithOptions.cs (2)
31var options = new FastTreeRegressionTrainer.Options 47var pipeline =
Dynamic\Transforms\TreeFeaturization\FastTreeRegressionFeaturizationWithOptions.cs (1)
46var trainerOptions = new FastTreeRegressionTrainer.Options
Microsoft.ML.Tests (5)
TrainerEstimators\TreeEnsembleFeaturizerTest.cs (1)
435var trainerOptions = new FastTreeRegressionTrainer.Options
TrainerEstimators\TreeEstimators.cs (4)
216var trainer = ML.Regression.Trainers.FastTree( 217new FastTreeRegressionTrainer.Options { NumberOfTrees = 10, NumberOfThreads = 1, NumberOfLeaves = 5 }); 909var trainer = ML.Regression.Trainers.FastTree( 910new FastTreeRegressionTrainer.Options { NumberOfTrees = 10, NumberOfThreads = 1, NumberOfLeaves = 5 });