|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System.Collections.Generic;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;
using Microsoft.ML.Trainers.FastTree;
using Microsoft.ML.Trainers.LightGbm;
namespace Microsoft.ML.AutoML
{
using ITrainerEstimator = ITrainerEstimator<IPredictionTransformer<object>, object>;
internal class FastForestRegressionExtension : ITrainerExtension
{
public IEnumerable<SweepableParam> GetHyperparamSweepRanges()
{
return SweepableParams.BuildFastForestParams();
}
public ITrainerEstimator CreateInstance(MLContext mlContext, IEnumerable<SweepableParam> sweepParams,
ColumnInformation columnInfo, IDataView validationSet)
{
var options = TrainerExtensionUtil.CreateOptions<FastForestRegressionTrainer.Options>(sweepParams, columnInfo.LabelColumnName);
options.ExampleWeightColumnName = columnInfo.ExampleWeightColumnName;
return mlContext.Regression.Trainers.FastForest(options);
}
public PipelineNode CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
{
return TrainerExtensionUtil.BuildPipelineNode(TrainerExtensionCatalog.GetTrainerName(this), sweepParams,
columnInfo.LabelColumnName, columnInfo.ExampleWeightColumnName);
}
}
internal class FastTreeRegressionExtension : ITrainerExtension
{
public IEnumerable<SweepableParam> GetHyperparamSweepRanges()
{
return SweepableParams.BuildFastTreeParams();
}
public ITrainerEstimator CreateInstance(MLContext mlContext, IEnumerable<SweepableParam> sweepParams,
ColumnInformation columnInfo, IDataView validationSet)
{
var options = TrainerExtensionUtil.CreateOptions<FastTreeRegressionTrainer.Options>(sweepParams, columnInfo.LabelColumnName);
options.ExampleWeightColumnName = columnInfo.ExampleWeightColumnName;
return mlContext.Regression.Trainers.FastTree(options);
}
public PipelineNode CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
{
return TrainerExtensionUtil.BuildPipelineNode(TrainerExtensionCatalog.GetTrainerName(this), sweepParams,
columnInfo.LabelColumnName, columnInfo.ExampleWeightColumnName);
}
}
internal class FastTreeTweedieRegressionExtension : ITrainerExtension
{
public IEnumerable<SweepableParam> GetHyperparamSweepRanges()
{
return SweepableParams.BuildFastTreeTweedieParams();
}
public ITrainerEstimator CreateInstance(MLContext mlContext, IEnumerable<SweepableParam> sweepParams,
ColumnInformation columnInfo, IDataView validationSet)
{
var options = TrainerExtensionUtil.CreateOptions<FastTreeTweedieTrainer.Options>(sweepParams, columnInfo.LabelColumnName);
options.ExampleWeightColumnName = columnInfo.ExampleWeightColumnName;
return mlContext.Regression.Trainers.FastTreeTweedie(options);
}
public PipelineNode CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
{
return TrainerExtensionUtil.BuildPipelineNode(TrainerExtensionCatalog.GetTrainerName(this), sweepParams,
columnInfo.LabelColumnName, columnInfo.ExampleWeightColumnName);
}
}
internal class LightGbmRegressionExtension : ITrainerExtension
{
public IEnumerable<SweepableParam> GetHyperparamSweepRanges()
{
return SweepableParams.BuildLightGbmParams();
}
public ITrainerEstimator CreateInstance(MLContext mlContext, IEnumerable<SweepableParam> sweepParams,
ColumnInformation columnInfo, IDataView validationSet)
{
LightGbmRegressionTrainer.Options options = TrainerExtensionUtil.CreateLightGbmOptions<LightGbmRegressionTrainer.Options, float, RegressionPredictionTransformer<LightGbmRegressionModelParameters>, LightGbmRegressionModelParameters>(sweepParams, columnInfo);
return mlContext.Regression.Trainers.LightGbm(options);
}
public PipelineNode CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
{
return TrainerExtensionUtil.BuildLightGbmPipelineNode(TrainerExtensionCatalog.GetTrainerName(this), sweepParams,
columnInfo.LabelColumnName, columnInfo.ExampleWeightColumnName, columnInfo.GroupIdColumnName);
}
}
internal class OnlineGradientDescentRegressionExtension : ITrainerExtension
{
public IEnumerable<SweepableParam> GetHyperparamSweepRanges()
{
return SweepableParams.BuildOnlineGradientDescentParams();
}
public ITrainerEstimator CreateInstance(MLContext mlContext, IEnumerable<SweepableParam> sweepParams,
ColumnInformation columnInfo, IDataView validationSet)
{
var options = TrainerExtensionUtil.CreateOptions<OnlineGradientDescentTrainer.Options>(sweepParams, columnInfo.LabelColumnName);
return mlContext.Regression.Trainers.OnlineGradientDescent(options);
}
public PipelineNode CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
{
return TrainerExtensionUtil.BuildPipelineNode(TrainerExtensionCatalog.GetTrainerName(this), sweepParams,
columnInfo.LabelColumnName);
}
}
internal class OlsRegressionExtension : ITrainerExtension
{
public IEnumerable<SweepableParam> GetHyperparamSweepRanges()
{
return SweepableParams.BuildOlsParams();
}
public ITrainerEstimator CreateInstance(MLContext mlContext, IEnumerable<SweepableParam> sweepParams,
ColumnInformation columnInfo, IDataView validationSet)
{
var options = TrainerExtensionUtil.CreateOptions<OlsTrainer.Options>(sweepParams, columnInfo.LabelColumnName);
options.ExampleWeightColumnName = columnInfo.ExampleWeightColumnName;
return mlContext.Regression.Trainers.Ols(options);
}
public PipelineNode CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
{
return TrainerExtensionUtil.BuildPipelineNode(TrainerExtensionCatalog.GetTrainerName(this), sweepParams,
columnInfo.LabelColumnName, columnInfo.ExampleWeightColumnName);
}
}
internal class LbfgsPoissonRegressionExtension : ITrainerExtension
{
public IEnumerable<SweepableParam> GetHyperparamSweepRanges()
{
return SweepableParams.BuildLbfgsPoissonRegressionParams();
}
public ITrainerEstimator CreateInstance(MLContext mlContext, IEnumerable<SweepableParam> sweepParams,
ColumnInformation columnInfo, IDataView validationSet)
{
var options = TrainerExtensionUtil.CreateOptions<LbfgsPoissonRegressionTrainer.Options>(sweepParams, columnInfo.LabelColumnName);
options.ExampleWeightColumnName = columnInfo.ExampleWeightColumnName;
return mlContext.Regression.Trainers.LbfgsPoissonRegression(options);
}
public PipelineNode CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
{
return TrainerExtensionUtil.BuildPipelineNode(TrainerExtensionCatalog.GetTrainerName(this), sweepParams,
columnInfo.LabelColumnName, columnInfo.ExampleWeightColumnName);
}
}
internal class SdcaRegressionExtension : ITrainerExtension
{
public IEnumerable<SweepableParam> GetHyperparamSweepRanges()
{
return SweepableParams.BuildSdcaParams();
}
public ITrainerEstimator CreateInstance(MLContext mlContext, IEnumerable<SweepableParam> sweepParams,
ColumnInformation columnInfo, IDataView validationSet)
{
var options = TrainerExtensionUtil.CreateOptions<SdcaRegressionTrainer.Options>(sweepParams, columnInfo.LabelColumnName);
return mlContext.Regression.Trainers.Sdca(options);
}
public PipelineNode CreatePipelineNode(IEnumerable<SweepableParam> sweepParams, ColumnInformation columnInfo)
{
return TrainerExtensionUtil.BuildPipelineNode(TrainerExtensionCatalog.GetTrainerName(this), sweepParams,
columnInfo.LabelColumnName);
}
}
}
|