|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using Microsoft.ML.Trainers.FastTree;
namespace Microsoft.ML.AutoML.CodeGen
{
internal partial class FastTreeOva
{
public override IEstimator<ITransformer> BuildFromOption(MLContext context, FastTreeOption param)
{
var option = new FastTreeBinaryTrainer.Options()
{
NumberOfLeaves = param.NumberOfLeaves,
NumberOfTrees = param.NumberOfTrees,
MinimumExampleCountPerLeaf = param.MinimumExampleCountPerLeaf,
LearningRate = param.LearningRate,
LabelColumnName = param.LabelColumnName,
FeatureColumnName = param.FeatureColumnName,
ExampleWeightColumnName = param.ExampleWeightColumnName,
NumberOfThreads = AutoMlUtils.GetNumberOfThreadFromEnvrionment(),
MaximumBinCountPerFeature = param.MaximumBinCountPerFeature,
FeatureFraction = param.FeatureFraction,
DiskTranspose = param.DiskTranspose,
};
return context.MulticlassClassification.Trainers.OneVersusAll(context.BinaryClassification.Trainers.FastTree(option), labelColumnName: param.LabelColumnName);
}
}
internal partial class FastTreeRegression
{
public override IEstimator<ITransformer> BuildFromOption(MLContext context, FastTreeOption param)
{
var option = new FastTreeRegressionTrainer.Options()
{
NumberOfLeaves = param.NumberOfLeaves,
NumberOfTrees = param.NumberOfTrees,
MinimumExampleCountPerLeaf = param.MinimumExampleCountPerLeaf,
LearningRate = param.LearningRate,
LabelColumnName = param.LabelColumnName,
FeatureColumnName = param.FeatureColumnName,
ExampleWeightColumnName = param.ExampleWeightColumnName,
NumberOfThreads = AutoMlUtils.GetNumberOfThreadFromEnvrionment(),
MaximumBinCountPerFeature = param.MaximumBinCountPerFeature,
DiskTranspose = param.DiskTranspose,
FeatureFraction = param.FeatureFraction,
};
return context.Regression.Trainers.FastTree(option);
}
}
internal partial class FastTreeTweedieRegression
{
public override IEstimator<ITransformer> BuildFromOption(MLContext context, FastTreeOption param)
{
var option = new FastTreeTweedieTrainer.Options()
{
NumberOfLeaves = param.NumberOfLeaves,
NumberOfTrees = param.NumberOfTrees,
MinimumExampleCountPerLeaf = param.MinimumExampleCountPerLeaf,
LearningRate = param.LearningRate,
LabelColumnName = param.LabelColumnName,
FeatureColumnName = param.FeatureColumnName,
ExampleWeightColumnName = param.ExampleWeightColumnName,
NumberOfThreads = AutoMlUtils.GetNumberOfThreadFromEnvrionment(),
MaximumBinCountPerFeature = param.MaximumBinCountPerFeature,
DiskTranspose = param.DiskTranspose,
FeatureFraction = param.FeatureFraction,
};
return context.Regression.Trainers.FastTreeTweedie(option);
}
}
internal partial class FastTreeBinary
{
public override IEstimator<ITransformer> BuildFromOption(MLContext context, FastTreeOption param)
{
var option = new FastTreeBinaryTrainer.Options()
{
NumberOfLeaves = param.NumberOfLeaves,
NumberOfTrees = param.NumberOfTrees,
MinimumExampleCountPerLeaf = param.MinimumExampleCountPerLeaf,
LearningRate = param.LearningRate,
LabelColumnName = param.LabelColumnName,
FeatureColumnName = param.FeatureColumnName,
ExampleWeightColumnName = param.ExampleWeightColumnName,
NumberOfThreads = AutoMlUtils.GetNumberOfThreadFromEnvrionment(),
MaximumBinCountPerFeature = param.MaximumBinCountPerFeature,
DiskTranspose = param.DiskTranspose,
FeatureFraction = param.FeatureFraction,
};
return context.BinaryClassification.Trainers.FastTree(option);
}
}
}
|