4 instantiations of FeatureSubsetModel
Microsoft.ML.Ensemble (4)
Trainer\Binary\EnsembleTrainer.cs (1)
105
models.Select(k => new
FeatureSubsetModel
<float>((TScalarPredictor)k)).ToArray(), combiner);
Trainer\EnsembleTrainerBase.cs (1)
158
var model = new
FeatureSubsetModel
<TOutput>(
Trainer\Multiclass\MulticlassDataPartitionEnsembleTrainer.cs (1)
102
models.Select(k => new
FeatureSubsetModel
<VBuffer<float>>((TVectorPredictor)k)).ToArray(),
Trainer\Regression\RegressionEnsembleTrainer.cs (1)
92
models.Select(k => new
FeatureSubsetModel
<float>((TScalarPredictor)k)).ToArray(), combiner);
62 references to FeatureSubsetModel
Microsoft.ML.Ensemble (62)
OutputCombiners\BaseStacking.cs (4)
123
public void Train(List<
FeatureSubsetModel
<TOutput>> models, RoleMappedData data, IHostEnvironment env)
153
TOutput>[] maps, List<
FeatureSubsetModel
<TOutput>> models)
170
List<
FeatureSubsetModel
<TOutput>> models, Func<float, T> labelConvert)
185
var
model = models[i];
OutputCombiners\IOutputCombiner.cs (1)
34
void Train(List<
FeatureSubsetModel
<TOutput>> models, RoleMappedData data, IHostEnvironment env);
Selector\DiversityMeasure\BaseDisagreementDiversityMeasure.cs (2)
14
public List<ModelDiversityMetric<TOutput>> CalculateDiversityMeasure(IList<
FeatureSubsetModel
<TOutput>> models,
15
ConcurrentDictionary<
FeatureSubsetModel
<TOutput>, TOutput[]> predictions)
Selector\DiversityMeasure\ModelDiversityMetric.cs (2)
11
public
FeatureSubsetModel
<TOutput> ModelX { get; set; }
12
public
FeatureSubsetModel
<TOutput> ModelY { get; set; }
Selector\IDiversityMeasure.cs (2)
16
List<ModelDiversityMetric<TOutput>> CalculateDiversityMeasure(IList<
FeatureSubsetModel
<TOutput>> models,
17
ConcurrentDictionary<
FeatureSubsetModel
<TOutput>, TOutput[]> predictions);
Selector\ISubModelSelector.cs (3)
15
IList<
FeatureSubsetModel
<TOutput>> Prune(IList<
FeatureSubsetModel
<TOutput>> models);
17
void CalculateMetrics(
FeatureSubsetModel
<TOutput> model, ISubsetSelector subsetSelector, Subset subset,
Selector\SubModelSelector\BaseBestPerformanceSelector.cs (6)
25
public override void CalculateMetrics(
FeatureSubsetModel
<TOutput> model,
31
public override IList<
FeatureSubsetModel
<TOutput>> Prune(IList<
FeatureSubsetModel
<TOutput>> models)
69
private sealed class ModelPerformanceComparer : IComparer<
FeatureSubsetModel
<TOutput>>
82
public int Compare(
FeatureSubsetModel
<TOutput> x,
FeatureSubsetModel
<TOutput> y)
Selector\SubModelSelector\BaseDiverseSelector.cs (8)
22
private readonly ConcurrentDictionary<
FeatureSubsetModel
<TOutput>, TOutput[]> _predictions;
29
_predictions = new ConcurrentDictionary<
FeatureSubsetModel
<TOutput>, TOutput[]>();
37
public override void CalculateMetrics(
FeatureSubsetModel
<TOutput> model,
69
public override IList<
FeatureSubsetModel
<TOutput>> Prune(IList<
FeatureSubsetModel
<TOutput>> models)
87
var selectedModels = new List<
FeatureSubsetModel
<TOutput>>();
115
public abstract List<ModelDiversityMetric<TOutput>> CalculateDiversityMeasure(IList<
FeatureSubsetModel
<TOutput>> models,
116
ConcurrentDictionary<
FeatureSubsetModel
<TOutput>, TOutput[]> predictions);
Selector\SubModelSelector\BaseSubModelSelector.cs (5)
28
protected void Print(IChannel ch, IList<
FeatureSubsetModel
<TOutput>> models, string metricName)
34
foreach (
var
model in models)
52
public virtual IList<
FeatureSubsetModel
<TOutput>> Prune(IList<
FeatureSubsetModel
<TOutput>> models)
72
public virtual void CalculateMetrics(
FeatureSubsetModel
<TOutput> model,
Selector\SubModelSelector\BestDiverseSelectorBinary.cs (2)
41
public override List<ModelDiversityMetric<Single>> CalculateDiversityMeasure(IList<
FeatureSubsetModel
<float>> models,
42
ConcurrentDictionary<
FeatureSubsetModel
<float>, Single[]> predictions)
Selector\SubModelSelector\BestDiverseSelectorMulticlass.cs (2)
42
public override List<ModelDiversityMetric<VBuffer<Single>>> CalculateDiversityMeasure(IList<
FeatureSubsetModel
<VBuffer<float>>> models,
43
ConcurrentDictionary<
FeatureSubsetModel
<VBuffer<float>>, VBuffer<Single>[]> predictions)
Selector\SubModelSelector\BestDiverseSelectorRegression.cs (2)
39
public override List<ModelDiversityMetric<Single>> CalculateDiversityMeasure(IList<
FeatureSubsetModel
<float>> models,
40
ConcurrentDictionary<
FeatureSubsetModel
<float>, Single[]> predictions)
Trainer\Binary\EnsembleTrainer.cs (1)
83
private protected override IPredictor CreatePredictor(List<
FeatureSubsetModel
<float>> models)
Trainer\EnsembleDistributionModelParameters.cs (3)
64
FeatureSubsetModel
<float>[] models, IOutputCombiner<Single> combiner, Single[] weights = null)
159
var
model = Models[i];
197
var
model = Models[i];
Trainer\EnsembleModelParameters.cs (2)
58
FeatureSubsetModel
<float>[] models, IOutputCombiner<Single> combiner, Single[] weights = null)
151
var
model = Models[i];
Trainer\EnsembleModelParametersBase.cs (4)
21
private protected readonly
FeatureSubsetModel
<TOutput>[] Models;
27
private protected EnsembleModelParametersBase(IHostEnvironment env, string name,
FeatureSubsetModel
<TOutput>[] models,
64
Models = new
FeatureSubsetModel
<TOutput>[count];
110
var
model = Models[i];
Trainer\EnsembleTrainerBase.cs (9)
137
var models = new List<
FeatureSubsetModel
<TOutput>>();
145
var batchModels = new
FeatureSubsetModel
<TOutput>[Trainers.Length];
158
var
model = new FeatureSubsetModel<TOutput>(
193
private protected abstract IPredictor CreatePredictor(List<
FeatureSubsetModel
<TOutput>> models);
208
private protected virtual void PrintMetrics(IChannel ch, List<
FeatureSubsetModel
<TOutput>> models)
217
foreach (
var
model in models)
221
private protected static
FeatureSubsetModel
<TOutput>[] CreateModels<T>(List<
FeatureSubsetModel
<TOutput>> models) where T : IPredictorProducing<TOutput>
223
var subsetModels = new
FeatureSubsetModel
<TOutput>[models.Count];
Trainer\Multiclass\EnsembleMulticlassModelParameters.cs (2)
50
internal EnsembleMulticlassModelParameters(IHostEnvironment env,
FeatureSubsetModel
<VBuffer<float>>[] models,
136
var
model = Models[i];
Trainer\Multiclass\MulticlassDataPartitionEnsembleTrainer.cs (1)
90
private protected override IPredictor CreatePredictor(List<
FeatureSubsetModel
<VBuffer<float>>> models)
Trainer\Regression\RegressionEnsembleTrainer.cs (1)
78
private protected override IPredictor CreatePredictor(List<
FeatureSubsetModel
<float>> models)