|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.CommandLine;
using Microsoft.ML.Data;
using Microsoft.ML.EntryPoints;
using Microsoft.ML.Internal.Internallearn;
using Microsoft.ML.Runtime;
using Microsoft.ML.Trainers.Ensemble;
[assembly: LoadableClass(typeof(BestDiverseSelectorMulticlass), typeof(BestDiverseSelectorMulticlass.Arguments),
typeof(SignatureEnsembleSubModelSelector), BestDiverseSelectorMulticlass.UserName, BestDiverseSelectorMulticlass.LoadName)]
namespace Microsoft.ML.Trainers.Ensemble
{
internal sealed class BestDiverseSelectorMulticlass : BaseDiverseSelector<VBuffer<Single>, IDiversityMeasure<VBuffer<Single>>>, IMulticlassSubModelSelector
{
public const string UserName = "Best Diverse Selector";
public const string LoadName = "BestDiverseSelectorMultiClass";
[TlcModule.Component(Name = LoadName, FriendlyName = UserName)]
public sealed class Arguments : DiverseSelectorArguments, ISupportMulticlassSubModelSelectorFactory
{
[Argument(ArgumentType.Multiple, HelpText = "The metric type to be used to find the diversity among base learners", ShortName = "dm", SortOrder = 50)]
[TGUI(Label = "Diversity Measure Type")]
public ISupportMulticlassDiversityMeasureFactory DiversityMetricType = new MultiDisagreementDiversityFactory();
public IMulticlassSubModelSelector CreateComponent(IHostEnvironment env) => new BestDiverseSelectorMulticlass(env, this);
}
public BestDiverseSelectorMulticlass(IHostEnvironment env, Arguments args)
: base(env, args, LoadName, args.DiversityMetricType)
{
}
protected override PredictionKind PredictionKind => PredictionKind.MulticlassClassification;
public override List<ModelDiversityMetric<VBuffer<Single>>> CalculateDiversityMeasure(IList<FeatureSubsetModel<VBuffer<float>>> models,
ConcurrentDictionary<FeatureSubsetModel<VBuffer<float>>, VBuffer<Single>[]> predictions)
{
Host.Assert(models.Count > 1);
Host.Assert(predictions.Count == models.Count);
var diversityMetric = CreateDiversityMetric();
return diversityMetric.CalculateDiversityMeasure(models, predictions);
}
}
}
|