|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.CommandLine;
using Microsoft.ML.EntryPoints;
using Microsoft.ML.Internal.Internallearn;
using Microsoft.ML.Runtime;
using Microsoft.ML.Trainers.Ensemble;
[assembly: LoadableClass(typeof(BestDiverseSelectorRegression), typeof(BestDiverseSelectorRegression.Arguments),
typeof(SignatureEnsembleSubModelSelector), BestDiverseSelectorRegression.UserName, BestDiverseSelectorRegression.LoadName)]
namespace Microsoft.ML.Trainers.Ensemble
{
internal sealed class BestDiverseSelectorRegression : BaseDiverseSelector<Single, RegressionDisagreementDiversityMeasure>, IRegressionSubModelSelector
{
public const string UserName = "Best Diverse Selector";
public const string LoadName = "BestDiverseSelectorRegression";
[TlcModule.Component(Name = LoadName, FriendlyName = UserName)]
public sealed class Arguments : DiverseSelectorArguments, ISupportRegressionSubModelSelectorFactory
{
[Argument(ArgumentType.Multiple, HelpText = "The metric type to be used to find the diversity among base learners", ShortName = "dm", SortOrder = 50)]
[TGUI(Label = "Diversity Measure Type")]
public ISupportRegressionDiversityMeasureFactory DiversityMetricType = new RegressionDisagreementDiversityFactory();
public IRegressionSubModelSelector CreateComponent(IHostEnvironment env) => new BestDiverseSelectorRegression(env, this);
}
public BestDiverseSelectorRegression(IHostEnvironment env, Arguments args)
: base(env, args, LoadName, args.DiversityMetricType)
{
}
public override List<ModelDiversityMetric<Single>> CalculateDiversityMeasure(IList<FeatureSubsetModel<float>> models,
ConcurrentDictionary<FeatureSubsetModel<float>, Single[]> predictions)
{
var diversityMetric = CreateDiversityMetric();
return diversityMetric.CalculateDiversityMeasure(models, predictions);
}
protected override PredictionKind PredictionKind => PredictionKind.Regression;
}
}
|