|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using Microsoft.ML.Runtime;
namespace Microsoft.ML.Trainers.Ensemble
{
internal abstract class BaseDisagreementDiversityMeasure<TOutput> : IDiversityMeasure<TOutput>
{
public List<ModelDiversityMetric<TOutput>> CalculateDiversityMeasure(IList<FeatureSubsetModel<TOutput>> models,
ConcurrentDictionary<FeatureSubsetModel<TOutput>, TOutput[]> predictions)
{
Contracts.Assert(models.Count > 1);
Contracts.Assert(predictions.Count == models.Count);
var diversityValues = new List<ModelDiversityMetric<TOutput>>();
for (int i = 0; i < (models.Count - 1); i++)
{
for (int j = i + 1; j < models.Count; j++)
{
Single differencesCount = 0;
var modelXOutputs = predictions[models[i]];
var modelYOutputs = predictions[models[j]];
for (int k = 0; k < modelXOutputs.Length; k++)
{
differencesCount += GetDifference(in modelXOutputs[k], in modelYOutputs[k]);
}
diversityValues.Add(new ModelDiversityMetric<TOutput>()
{
DiversityNumber = differencesCount,
ModelX = models[i],
ModelY = models[j]
});
}
}
return diversityValues;
}
protected abstract Single GetDifference(in TOutput tOutput1, in TOutput tOutput2);
}
}
|