159 instantiations of TGUI
Microsoft.ML.Data (2)
Transforms\NormalizeColumn.cs (2)
110[TGUI(Label = "Max number of bins")] 233[TGUI(Label = "Max number of bins")]
Microsoft.ML.Ensemble (33)
OutputCombiners\BaseStacking.cs (1)
22[TGUI(Label = "Validation Dataset Proportion")]
OutputCombiners\MultiStacking.cs (1)
47[TGUI(Label = "Base predictor")]
OutputCombiners\MultiWeightedAverage.cs (3)
48[TGUI(Label = "Metric Name", Description = "The weights are calculated according to the selected metric")] 100[TGUI(Label = MulticlassClassificationEvaluator.AccuracyMicro)] 102[TGUI(Label = MulticlassClassificationEvaluator.AccuracyMacro)]
OutputCombiners\RegressionStacking.cs (1)
45[TGUI(Label = "Base predictor")]
OutputCombiners\Stacking.cs (1)
44[TGUI(Label = "Base predictor")]
OutputCombiners\WeightedAverage.cs (7)
43[TGUI(Label = "Weightage Name", Description = "The weights are calculated according to the selected metric")] 98[TGUI(Label = BinaryClassifierEvaluator.Accuracy)] 100[TGUI(Label = BinaryClassifierEvaluator.Auc)] 102[TGUI(Label = BinaryClassifierEvaluator.PosPrecName)] 104[TGUI(Label = BinaryClassifierEvaluator.PosRecallName)] 106[TGUI(Label = BinaryClassifierEvaluator.NegPrecName)] 108[TGUI(Label = BinaryClassifierEvaluator.NegRecallName)]
Selector\SubModelSelector\BestDiverseSelectorBinary.cs (1)
29[TGUI(Label = "Diversity Measure Type")]
Selector\SubModelSelector\BestDiverseSelectorMulticlass.cs (1)
30[TGUI(Label = "Diversity Measure Type")]
Selector\SubModelSelector\BestDiverseSelectorRegression.cs (1)
29[TGUI(Label = "Diversity Measure Type")]
Selector\SubModelSelector\BestPerformanceRegressionSelector.cs (1)
25[TGUI(Label = "Metric Name")]
Selector\SubModelSelector\BestPerformanceSelector.cs (1)
25[TGUI(Label = "Metric Name")]
Selector\SubModelSelector\BestPerformanceSelectorMulticlass.cs (1)
25[TGUI(Label = "Metric Name")]
Selector\SubModelSelector\SubModelDataSelector.cs (2)
18[TGUI(Label = "Learners Selection Proportion")] 23[TGUI(Label = "Validation Dataset Proportion")]
Trainer\Binary\EnsembleTrainer.cs (2)
42[TGUI(Label = "Sub-Model Selector(pruning) Type", 47[TGUI(Label = "Output combiner", Description = "Output combiner type")]
Trainer\EnsembleTrainerBase.cs (5)
30[TGUI(Label = "Number of Models per batch")] 34[TGUI(Label = "Batch Size", 40[TGUI(Label = "Sampling Type", Description = "Subset Selection Algorithm to induce the base learner.Sub-settings can be used to select the features")] 44[TGUI(Label = "Train parallel", Description = "All the base learners will run asynchronously if the value is true")] 50[TGUI(Label = "Show Sub-Model Metrics")]
Trainer\Multiclass\MulticlassDataPartitionEnsembleTrainer.cs (2)
44[TGUI(Label = "Sub-Model Selector(pruning) Type", Description = "Algorithm to prune the base learners for selective Ensemble")] 48[TGUI(Label = "Output combiner", Description = "Output combiner type")]
Trainer\Regression\RegressionEnsembleTrainer.cs (2)
38[TGUI(Label = "Sub-Model Selector(pruning) Type", Description = "Algorithm to prune the base learners for selective Ensemble")] 42[TGUI(Label = "Output combiner", Description = "Output combiner type")]
Microsoft.ML.FastTree (34)
FastTreeArguments.cs (29)
70[TGUI(Label = "Optimize for unbalanced")] 228[TGUI(NoSweep = true)] 243[TGUI(NotGui = true)] 251[TGUI(NotGui = true)] 256[TGUI(NotGui = true)] 261[TGUI(NotGui = true)] 266[TGUI(NotGui = true)] 271[TGUI(NotGui = true)] 380[TGUI(NotGui = true)] 514[TGUI(Description = "The maximum number of leaves per tree", SuggestedSweeps = "2-128;log;inc:4")] 524[TGUI(Description = "Minimum number of training instances required to form a leaf", SuggestedSweeps = "1,10,50")] 533[TGUI(Description = "Total number of trees constructed", SuggestedSweeps = "20,100,500")] 576[TGUI(NotGui = true)] 584[TGUI(NotGui = true)] 591[TGUI(NotGui = true)] 599[TGUI(NotGui = true)] 608[TGUI(NotGui = true)] 695[TGUI(Label = "Early Stopping Rule", Description = "Early stopping rule. (Validation set (/valid) is required.)")] 722[TGUI(Description = "Early stopping metrics. (For regression, 1: L1, 2:L2; for ranking, 1:NDCG@1, 3:NDCG@3)")] 741[TGUI(Description = "Pruning threshold")] 748[TGUI(Description = "Pruning window size")] 755[TGUI(Label = "Learning Rate", SuggestedSweeps = "0.025-0.4;log")] 763[TGUI(Label = "Shrinkage", SuggestedSweeps = "0.25-4;log")] 771[TGUI(SuggestedSweeps = "0,0.000000001,0.05,0.1,0.2")] 797[TGUI(NotGui = true)] 804[TGUI(NotGui = true)] 827[TGUI(NotGui = true)] 835[TGUI(NotGui = true)] 844[TGUI(NotGui = true)]
GamClassification.cs (1)
70[TGUI(Label = "Optimize for unbalanced")]
GamRegression.cs (1)
67[TGUI(Description = "Metric for pruning. (For regression, 1: L1, 2:L2; default L2")]
GamTrainer.cs (3)
57[TGUI(SuggestedSweeps = "200,1500,9500")] 71[TGUI(SuggestedSweeps = "0.001,0.1;log")] 109[TGUI(SuggestedSweeps = "1,10,50")]
Microsoft.ML.ImageAnalytics (3)
ImageResizer.cs (3)
381[TGUI(Label = "Isotropic with Padding")] 387[TGUI(Label = "Isotropic with Cropping")] 393[TGUI(Label = "Ignore aspect ratio and squeeze/stretch into target dimensions")]
Microsoft.ML.KMeansClustering (5)
KMeansPlusPlusTrainer.cs (5)
111[TGUI(SuggestedSweeps = "5,10,20,40")] 126[TGUI(Label = "Optimization Tolerance", Description = "Threshold for trainer convergence")] 133[TGUI(Label = "Max Number of Iterations")] 141[TGUI(Label = "Memory Budget (in MBs) for KMeans Acceleration")] 148[TGUI(Label = "Number of threads")]
Microsoft.ML.LightGbm (10)
LightGbmArguments.cs (2)
150[TGUI(Label = "Lambda(L2)", SuggestedSweeps = "0,0.5,1")] 164[TGUI(Label = "Alpha(L1)", SuggestedSweeps = "0,0.5,1")]
LightGbmBinaryTrainer.cs (1)
159[TGUI(Label = "Sigmoid", SuggestedSweeps = "0.5,1")]
LightGbmMulticlassTrainer.cs (1)
102[TGUI(Label = "Sigmoid", SuggestedSweeps = "0.5,1")]
LightGbmRankingTrainer.cs (2)
132[TGUI(Label = "Ranking Label Gain")] 139[TGUI(Label = "Sigmoid", SuggestedSweeps = "0.5,1")]
LightGbmTrainerBase.cs (4)
83[TGUI(Label = "Number of boosting iterations", SuggestedSweeps = "10,20,50,100,150,200")] 96[TGUI(Label = "Learning Rate", SuggestedSweeps = "0.025-0.4;log")] 105[TGUI(Description = "The maximum number of leaves per tree", SuggestedSweeps = "2-128;log;inc:4")] 114[TGUI(Label = "Min Documents In Leaves", SuggestedSweeps = "1,10,20,50 ")]
Microsoft.ML.Mkl.Components (7)
OlsLinearRegression.cs (1)
83[TGUI(SuggestedSweeps = "1e-6,0.1,1")]
SymSgdClassificationTrainer.cs (4)
96[TGUI(SuggestedSweeps = "1,5,10,20,30,40,50")] 111[TGUI(SuggestedSweeps = "<Auto>,1e1,1e0,1e-1,1e-2,1e-3")] 119[TGUI(SuggestedSweeps = "0.0,1e-5,1e-5,1e-6,1e-7")] 129[TGUI(SuggestedSweeps = "<Auto>,5,20")]
VectorWhitening.cs (2)
42[TGUI(Label = "PCA whitening")] 46[TGUI(Label = "ZCA whitening")]
Microsoft.ML.PCA (2)
PcaTrainer.cs (2)
97[TGUI(SuggestedSweeps = "10,20,40,80")] 102[TGUI(SuggestedSweeps = "10,20,40")]
Microsoft.ML.Recommender (7)
MatrixFactorizationTrainer.cs (7)
170[TGUI(SuggestedSweeps = "0,12")] 183[TGUI(SuggestedSweeps = "0.01,0.05,0.1,0.5,1")] 196[TGUI(SuggestedSweeps = "8,16,64,128")] 204[TGUI(SuggestedSweeps = "10,20,40")] 217[TGUI(SuggestedSweeps = "0.001,0.01,0.1")] 237[TGUI(SuggestedSweeps = "1,0.01,0.0001,0.000001")] 249[TGUI(SuggestedSweeps = "0.000001,0,0001,0.01")]
Microsoft.ML.StandardTrainers (34)
LdSvm\LdSvmTrainer.cs (6)
79[TGUI(SuggestedSweeps = "1,3,5,7")] 88[TGUI(SuggestedSweeps = "0.1,0.01,0.001")] 97[TGUI(SuggestedSweeps = "0.1,0.01,0.001")] 106[TGUI(SuggestedSweeps = "0.1,0.01,0.001")] 115[TGUI(SuggestedSweeps = "1.0,0.1,0.01")] 133[TGUI(SuggestedSweeps = "10000,15000")]
Standard\LogisticRegression\LbfgsPredictorBase.cs (6)
46[TGUI(Label = "L2 Weight", Description = "Weight of L2 regularizer term", SuggestedSweeps = "0,0.1,1")] 55[TGUI(Label = "L1 Weight", Description = "Weight of L1 regularizer term", SuggestedSweeps = "0,0.1,1")] 65[TGUI(Label = "Optimization Tolerance", Description = "Threshold for optimizer convergence", SuggestedSweeps = "1e-4,1e-7")] 74[TGUI(Description = "Memory size for L-BFGS", SuggestedSweeps = "5,20,50")] 83[TGUI(Label = "Max Number of Iterations")] 113[TGUI(Label = "Initial Weights Scale", SuggestedSweeps = "0,0.1,0.5,1")]
Standard\MulticlassClassification\MetaMulticlassTrainer.cs (1)
24[TGUI(Label = "Predictor Type", Description = "Type of underlying binary predictor")]
Standard\MulticlassClassification\OneVersusAllTrainer.cs (1)
106[TGUI(Label = "Use Probability", Description = "Use probabilities (vs. raw outputs) to identify top-score category")]
Standard\Online\AveragedLinear.cs (3)
28[TGUI(Label = "Learning rate", SuggestedSweeps = "0.01,0.1,0.5,1.0")] 41[TGUI(Label = "Decrease Learning Rate", Description = "Decrease learning rate as iterations progress")] 70[TGUI(Label = "L2 Regularization Weight")]
Standard\Online\LinearSvm.cs (2)
84[TGUI(SuggestedSweeps = "0.00001-0.1;log;inc:10")] 90[TGUI(Label = "Batch Size")]
Standard\Online\OnlineGradientDescent.cs (1)
73[TGUI(Label = "Loss Function")]
Standard\Online\OnlineLinear.cs (3)
28[TGUI(Label = "Number of Iterations", Description = "Number of training iterations through data", SuggestedSweeps = "1,10,100")] 37[TGUI(NoSweep = true)] 48[TGUI(Label = "Initial Weights Scale", SuggestedSweeps = "0,0.1,0.5,1")]
Standard\SdcaBinary.cs (11)
164[TGUI(Label = "L2 Regularizer Constant", SuggestedSweeps = "<Auto>,1e-7,1e-6,1e-5,1e-4,1e-3,1e-2")] 175[TGUI(Label = "L1 Soft Threshold", SuggestedSweeps = "<Auto>,0,0.25,0.5,0.75,1")] 187[TGUI(Label = "Number of threads", SuggestedSweeps = "<Auto>,1,2,4")] 194[TGUI(SuggestedSweeps = "0.001, 0.01, 0.1, 0.2")] 206[TGUI(Label = "Max number of iterations", SuggestedSweeps = "<Auto>,10,20,100")] 235[TGUI(SuggestedSweeps = "0, 0.01, 0.1, 1")] 1841[TGUI(Label = "L2 Regularization Constant", SuggestedSweeps = "1e-7,5e-7,1e-6,5e-6,1e-5")] 1853[TGUI(Label = "Number of threads", SuggestedSweeps = "1,2,4")] 1861[TGUI(SuggestedSweeps = "1e-2,1e-3,1e-4,1e-5")] 1873[TGUI(Label = "Max number of iterations", SuggestedSweeps = "1,5,10,20")] 1882[TGUI(Label = "Initial Learning Rate (for SGD)")]
Microsoft.ML.Transforms (22)
OneHotEncoding.cs (4)
209[TGUI(Label = "Output is a bag (multi-set) vector")] 215[TGUI(Label = "Output is an indicator vector")] 221[TGUI(Label = "Output is a key value")] 227[TGUI(Label = "Output is binary encoded")]
Text\LdaTransform.cs (6)
60[TGUI(SuggestedSweeps = "20,40,100,200")] 65[TGUI(SuggestedSweeps = "1,10,100,200")] 70[TGUI(SuggestedSweeps = "0.01,0.015,0.07,0.02")] 75[TGUI(SuggestedSweeps = "2,4,8,16")] 80[TGUI(SuggestedSweeps = "100,200,300,400")] 98[TGUI(SuggestedSweeps = "10,20,30,40")]
Text\TextFeaturizingEstimator.cs (2)
203[TGUI(Label = "Word Gram Extractor")] 244[TGUI(Label = "Char Gram Extractor")]
Text\WordEmbeddingsExtractor.cs (10)
838[TGUI(Label = "GloVe 50D")] 844[TGUI(Label = "GloVe 100D")] 850[TGUI(Label = "GloVe 200D")] 856[TGUI(Label = "GloVe 300D")] 862[TGUI(Label = "GloVe Twitter 25D")] 868[TGUI(Label = "GloVe Twitter 50D")] 874[TGUI(Label = "GloVe Twitter 100D")] 880[TGUI(Label = "GloVe Twitter 200D")] 886[TGUI(Label = "fastText Wikipedia 300D")] 892[TGUI(Label = "Sentiment-Specific Word Embedding")]