368 references to Append
Microsoft.ML.AutoML (2)
SweepableEstimator\SweepableEstimatorPipeline.cs (1)
83pipeline = pipeline.Append(_estimators[i].BuildFromOption(context, parameter[ssName]));
SweepableEstimator\SweepablePipeline.cs (1)
101pipeline = pipeline.Append(kv.estimator.BuildFromOption(context, kv.param));
Microsoft.ML.Data (5)
DataLoadSave\CompositeLoaderEstimator.cs (1)
54return new CompositeLoaderEstimator<TSource, TNewTrans>(_start, _estimatorChain.Append(estimator));
DataLoadSave\EstimatorExtensions.cs (4)
55return est.Append(estimator, scope); 57return new EstimatorChain<ITransformer>().Append(start).Append(estimator, scope); 71return new EstimatorChain<ITransformer>().Append(start).AppendCacheCheckpoint(env);
Microsoft.ML.DnnImageFeaturizer.AlexNet (5)
AlexNetExtension.cs (5)
48modelChain = modelChain.Append(inputRename); 49var modelChain2 = modelChain.Append(prepEstimator); 50modelChain = modelChain2.Append(midRename); 51modelChain2 = modelChain.Append(mainEstimator); 52modelChain = modelChain2.Append(endRename);
Microsoft.ML.DnnImageFeaturizer.ResNet101 (5)
ResNet101Extension.cs (5)
48modelChain = modelChain.Append(inputRename); 49var modelChain2 = modelChain.Append(prepEstimator); 50modelChain = modelChain2.Append(midRename); 51modelChain2 = modelChain.Append(mainEstimator); 52modelChain = modelChain2.Append(endRename);
Microsoft.ML.DnnImageFeaturizer.ResNet18 (5)
ResNet18Extension.cs (5)
48modelChain = modelChain.Append(inputRename); 49var modelChain2 = modelChain.Append(prepEstimator); 50modelChain = modelChain2.Append(midRename); 51modelChain2 = modelChain.Append(mainEstimator); 52modelChain = modelChain2.Append(endRename);
Microsoft.ML.DnnImageFeaturizer.ResNet50 (5)
ResNet50Extension.cs (5)
48modelChain = modelChain.Append(inputRename); 49var modelChain2 = modelChain.Append(prepEstimator); 50modelChain = modelChain2.Append(midRename); 51modelChain2 = modelChain.Append(mainEstimator); 52modelChain = modelChain2.Append(endRename);
Microsoft.ML.IntegrationTests (24)
DataTransformation.cs (1)
145.Append(mlContext.BinaryClassification.Trainers.SdcaLogisticRegression(
Debugging.cs (2)
109.Append(mlContext.Regression.Trainers.Sdca( 176.Append(mlContext.Regression.Trainers.Sdca(
Evaluation.cs (5)
67.Append(mlContext.BinaryClassification.Trainers.SdcaNonCalibrated( 96.Append(mlContext.BinaryClassification.Trainers.LbfgsLogisticRegression( 125.Append(mlContext.Clustering.Trainers.KMeans(new KMeansTrainer.Options { NumberOfThreads = 1 })); 154.Append(mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy( 302.Append(mlContext.BinaryClassification.Trainers.LbfgsLogisticRegression(
IntrospectiveTraining.cs (4)
83.Append(mlContext.BinaryClassification.Trainers.FastTree( 227.Append(mlContext.BinaryClassification.Trainers.SdcaNonCalibrated( 339.Append(mlContext.Transforms.Categorical.OneHotHashEncoding("CategoricalFeatures", numberOfBits: 8, // get collisions! 396.Append(StepTwo(mlContext));
ONNX.cs (3)
43.Append(mlContext.Regression.Trainers.FastTree( 93.Append(mlContext.Clustering.Trainers.KMeans( 145.Append(mlContext.Regression.Trainers.Sdca(
Prediction.cs (1)
52.Append(mlContext.BinaryClassification.Trainers.LbfgsLogisticRegression(
SchemaDefinitionTests.cs (2)
68.Append(_ml.Transforms.Concatenate("Features", "NumericFeatures", "Categories", "Workclass")) 69.Append(_ml.Transforms.FeatureSelection.SelectFeaturesBasedOnMutualInformation("Features"));
Training.cs (5)
457.Append(mlContext.Transforms.Conversion.MapValueToKey("Label")) 458.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(binaryClassificationTrainer)); 488.Append(mlContext.Transforms.Conversion.MapValueToKey("Label")) 489.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(binaryClassificationTrainer)) 490.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel"));
Validation.cs (1)
86var trainingPipeline = dataProcessPipeline.Append(trainer);
Microsoft.ML.OnnxTransformerTest (14)
DnnImageFeaturizerTest.cs (8)
111.Append(ML.Transforms.ExtractPixels("data_0", interleavePixelColors: true)) 112.Append(ML.Transforms.DnnFeaturizeImage("output_1", m => m.ModelSelector.ResNet18(m.Environment, m.OutputColumn, m.InputColumn), "data_0")); 223.Append(ML.Transforms.ResizeImages("ImagePath_featurized", 224, 224, "ImagePath_featurized")) 224.Append(ML.Transforms.ExtractPixels("ImagePath_featurized", "ImagePath_featurized")) 225.Append(ML.Transforms.DnnFeaturizeImage("ImagePath_featurized", m => m.ModelSelector.ResNet18(m.Environment, m.OutputColumn, m.InputColumn), "ImagePath_featurized")) 226.Append(ML.Transforms.Concatenate("Features", new[] { "ImagePath_featurized" })) 227.Append(ML.Transforms.NormalizeMinMax("Features", "Features")) 233var trainingPipeline = dataProcessPipeline.Append(trainer);
OnnxTransformTests.cs (6)
256.Append(ML.Transforms.ExtractPixels("data_0", interleavePixelColors: true)) 257.Append(ML.Transforms.ApplyOnnxModel("softmaxout_1", "data_0", fileStream, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu)); 307.Append(ML.Transforms.ExtractPixels("data_0", interleavePixelColors: true)) 308.Append(ML.Transforms.ApplyOnnxModel("softmaxout_1", "data_0", modelFile, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu)); 1136.Append(ML.Transforms.ExtractPixels("data_0", interleavePixelColors: true)) 1137.Append(ML.Transforms.ApplyOnnxModel(new[] { "softmaxout_1" }, new[] { "data_0" }, modelFile,
Microsoft.ML.PerformanceTests (10)
KMeansAndLogisticRegressionBench.cs (4)
38.Append(ml.Transforms.Concatenate("Features", "NumFeatures", "CatFeatures")) 39.Append(ml.Clustering.Trainers.KMeans("Features")) 40.Append(ml.Transforms.Concatenate("Features", "Features", "Score")) 41.Append(ml.BinaryClassification.Trainers.LbfgsLogisticRegression(
PredictionEngineBench.cs (1)
59.Append(env.MulticlassClassification.Trainers.SdcaMaximumEntropy(
RffTransform.cs (3)
47.Append(mlContext.Transforms.Concatenate("Features", "FeaturesRFF")) 48.Append(new ValueToKeyMappingEstimator(mlContext, "Label")) 49.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(mlContext.BinaryClassification.Trainers.AveragedPerceptron(numberOfIterations: 10)));
StochasticDualCoordinateAscentClassifierBench.cs (1)
80.Append(_mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy());
TextPredictionEngineCreation.cs (1)
30.Append(_context.BinaryClassification.Trainers.SdcaNonCalibrated(
Microsoft.ML.Samples (44)
Dynamic\ModelOperations\OnnxConversion.cs (9)
52.Append(mlContext.Transforms.Categorical.OneHotEncoding("education")) 53.Append(mlContext.Transforms.Categorical.OneHotEncoding("marital-status")) 54.Append(mlContext.Transforms.Categorical.OneHotEncoding("occupation")) 55.Append(mlContext.Transforms.Categorical.OneHotEncoding("relationship")) 56.Append(mlContext.Transforms.Categorical.OneHotEncoding("ethnicity")) 57.Append(mlContext.Transforms.Categorical.OneHotEncoding("native-country")) 59.Append(mlContext.Transforms.Concatenate("Features", "workclass", "education", "marital-status", 63.Append(mlContext.Transforms.NormalizeMinMax("Features")) 64.Append(mlContext.BinaryClassification.Trainers.AveragedPerceptron());
Dynamic\TensorFlow\TextClassification.cs (3)
109.Append(mlContext.Transforms.CustomMapping( 112.Append(tensorFlowModel.ScoreTensorFlowModel( 115.Append(mlContext.Transforms.CopyColumns(
Dynamic\Trainers\BinaryClassification\PermutationFeatureImportance.cs (1)
30.Append(mlContext.BinaryClassification.Trainers
Dynamic\Trainers\BinaryClassification\PermutationFeatureImportanceLoadFromDisk.cs (1)
26.Append(mlContext.BinaryClassification.Trainers.SdcaLogisticRegression()
Dynamic\Trainers\MulticlassClassification\PermutationFeatureImportance.cs (2)
31.Append(mlContext.Transforms.NormalizeMinMax("Features")) 32.Append(mlContext.MulticlassClassification.Trainers
Dynamic\Trainers\MulticlassClassification\PermutationFeatureImportanceLoadFromDisk.cs (2)
34.Append(mlContext.Transforms.NormalizeMinMax("Features")) 35.Append(mlContext.MulticlassClassification.Trainers
Dynamic\Trainers\Ranking\PermutationFeatureImportance.cs (3)
30.Append(mlContext.Transforms.Conversion.MapValueToKey( 32.Append(mlContext.Transforms.NormalizeMinMax("Features")) 33.Append(mlContext.Ranking.Trainers.FastTree());
Dynamic\Trainers\Ranking\PermutationFeatureImportanceLoadFromDisk.cs (3)
32.Append(mlContext.Transforms.Conversion.MapValueToKey( 34.Append(mlContext.Transforms.NormalizeMinMax("Features")) 35.Append(mlContext.Ranking.Trainers.FastTree());
Dynamic\Trainers\Regression\PermutationFeatureImportance.cs (1)
32.Append(mlContext.Regression.Trainers.Ols());
Dynamic\Trainers\Regression\PermutationFeatureImportanceLoadFromDisk.cs (1)
34.Append(mlContext.Regression.Trainers.Ols());
Dynamic\Transforms\Conversion\KeyToValueToKey.cs (1)
85var pipeline = defaultPipeline.Append(mlContext.Transforms.Conversion
Dynamic\Transforms\Conversion\MapKeyToVector.cs (3)
45.Append(mlContext.Transforms.Conversion.MapValueToKey("Parts")) 46.Append(mlContext.Transforms.Conversion.MapKeyToVector( 48.Append(mlContext.Transforms.Conversion.MapKeyToVector(
Dynamic\Transforms\Conversion\MapValue.cs (1)
63.Append(mlContext.Transforms.Conversion.MapValue("Label",
Dynamic\Transforms\Expression.cs (2)
36.Append(mlContext.Transforms.Expression("Expr3", "(s,f1,f2,i)=>len(concat(s,\"a\"))+f1+f2+i", 38.Append(mlContext.Transforms.Expression("Expr4", "(x,y)=>cos(x+pi())*y",
Dynamic\Transforms\ImageAnalytics\DnnFeaturizeImage.cs (2)
51.Append(mlContext.Transforms.ExtractPixels("Pixels", "ImageObject")) 52.Append(mlContext.Transforms.DnnFeaturizeImage("FeaturizedImage",
Dynamic\Transforms\ImageAnalytics\ExtractPixels.cs (1)
52.Append(mlContext.Transforms.ExtractPixels("Pixels",
Dynamic\Transforms\Text\ApplyCustomWordEmbedding.cs (1)
50.Append(mlContext.Transforms.Text.ApplyWordEmbedding("Features",
Dynamic\Transforms\Text\ApplyWordEmbedding.cs (1)
39.Append(mlContext.Transforms.Text.ApplyWordEmbedding("Features",
Dynamic\Transforms\Text\LatentDirichletAllocation.cs (4)
44.Append(mlContext.Transforms.Text.RemoveDefaultStopWords("Tokens")) 45.Append(mlContext.Transforms.Conversion.MapValueToKey("Tokens")) 46.Append(mlContext.Transforms.Text.ProduceNgrams("Tokens")) 47.Append(mlContext.Transforms.Text.LatentDirichletAllocation(
Dynamic\Transforms\Text\ProduceHashedNgrams.cs (1)
48.Append(mlContext.Transforms.Text.ProduceHashedNgrams(
Dynamic\Transforms\Text\ProduceNgrams.cs (1)
57.Append(mlContext.Transforms.Text.ProduceNgrams("NgramFeatures",
Microsoft.ML.Samples.GPU (3)
docs\samples\Microsoft.ML.Samples\Dynamic\TensorFlow\TextClassification.cs (3)
109.Append(mlContext.Transforms.CustomMapping( 112.Append(tensorFlowModel.ScoreTensorFlowModel( 115.Append(mlContext.Transforms.CopyColumns(
Microsoft.ML.SamplesUtils (8)
SamplesDatasetUtils.cs (8)
94.Append(mlContext.Transforms.Categorical.OneHotEncoding("education")) 95.Append(mlContext.Transforms.Categorical.OneHotEncoding("marital-status")) 96.Append(mlContext.Transforms.Categorical.OneHotEncoding("occupation")) 97.Append(mlContext.Transforms.Categorical.OneHotEncoding("relationship")) 98.Append(mlContext.Transforms.Categorical.OneHotEncoding("ethnicity")) 99.Append(mlContext.Transforms.Categorical.OneHotEncoding("native-country")) 101.Append(mlContext.Transforms.Concatenate("Features", "workclass", "education", "marital-status", 105.Append(mlContext.Transforms.NormalizeMinMax("Features"));
Microsoft.ML.TensorFlow.Tests (30)
TensorFlowEstimatorTests.cs (8)
164.Append(ML.Transforms.ExtractPixels("Input", interleavePixelColors: true)) 165.Append(ML.Model.LoadTensorFlowModel(modelLocation).ScoreTensorFlowModel("Output", "Input")); 207.Append(ML.Transforms.ExtractPixels("Input", interleavePixelColors: true)) 208.Append(ML.Model.LoadTensorFlowModel(modelLocation, false).ScoreTensorFlowModel("Output", "Input")); 221.Append(ML.Transforms.ExtractPixels("Input", interleavePixelColors: true)) 222.Append(ML.Model.LoadTensorFlowModel(modelLocation).ScoreTensorFlowModel("Output", "Input")); 257.Append(ML.Transforms.ExtractPixels("Input", interleavePixelColors: true)) 258.Append(tensorFlowModel.ScoreTensorFlowModel("Output", "Input"));
TensorflowTests.cs (22)
150.Append(new ImagePixelExtractingEstimator(_mlContext, "Input", "ImageCropped", interleavePixelColors: true)) 151.Append(_mlContext.Model.LoadTensorFlowModel(modelLocation).ScoreTensorFlowModel("Output", "Input")) 152.Append(new ColumnConcatenatingEstimator(_mlContext, "Features", "Output")) 153.Append(new ValueToKeyMappingEstimator(_mlContext, "Label")) 155.Append(_mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy()); 670.Append(_mlContext.Transforms.Concatenate("Features", "Softmax", "dense/Relu")) 671.Append(_mlContext.MulticlassClassification.Trainers.LightGbm("Label", "Features")); 841.Append(_mlContext.MulticlassClassification.Trainers.LightGbm(new Trainers.LightGbm.LightGbmMulticlassTrainer.Options() 894.Append(_mlContext.Transforms.Concatenate("Features", new[] { "Softmax", "dense/Relu" })) 895.Append(_mlContext.MulticlassClassification.Trainers.LightGbm("Label", "Features")); 1023.Append(new ImagePixelExtractingEstimator(_mlContext, "Input", 1118.Append(tensorFlowModel.ScoreTensorFlowModel("Output", "Input")) 1119.Append(_mlContext.Transforms.Conversion.MapValueToKey("Label")) 1120.Append(_mlContext.MulticlassClassification.Trainers.NaiveBayes("Label", "Output")); 1160.Append(new ImagePixelExtractingEstimator(_mlContext, "Input", "ImageCropped", interleavePixelColors: true)) 1161.Append(_mlContext.Model.LoadTensorFlowModel(modelLocation).ScoreTensorFlowModel("Output", "Input")) 1162.Append(new ColumnConcatenatingEstimator(_mlContext, "Features", "Output")) 1163.Append(new ValueToKeyMappingEstimator(_mlContext, "Label")) 1165.Append(_mlContext.MulticlassClassification.Trainers.NaiveBayes()); 1681.Append(_mlContext.Transforms.Conversion.MapKeyToValue( 2064.Append(_mlContext.Transforms.ExtractPixels("Input", interleavePixelColors: true)) 2065.Append(tfModel.ScoreTensorFlowModel("Output", "Input"));
Microsoft.ML.Tests (174)
CachingTests.cs (6)
47.Append(ML.Transforms.NormalizeMeanVariance("Norm2", "F1")); 56.Append(ML.Transforms.NormalizeMinMax("Norm1", "F1")) 57.Append(ML.Transforms.NormalizeMeanVariance("Norm2", "F1")); 75.Append(ML.Transforms.CopyColumns("F1", "Features")) 76.Append(ML.Transforms.NormalizeMinMax("Norm1", "F1")) 77.Append(ML.Transforms.NormalizeMeanVariance("Norm2", "F1"));
CalibratedModelParametersTests.cs (1)
136return pipeline.Append(ML.Transforms.Conversion.ConvertType("Label", outputKind: DataKind.Boolean))
DatabaseLoaderTests.cs (10)
70.Append(mlContext.MulticlassClassification.Trainers.LightGbm()) 71.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")); 106.Append(mlContext.MulticlassClassification.Trainers.LightGbm()) 107.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")); 142.Append(mlContext.MulticlassClassification.Trainers.LightGbm()) 143.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")); 174.Append(mlContext.MulticlassClassification.Trainers.LightGbm()) 175.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")); 206.Append(mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy()) 207.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel"));
FeatureContributionTests.cs (16)
35.Append(ML.Transforms.CalculateFeatureContribution(model, numberOfPositiveContributions: 0)) 36.Append(ML.Transforms.CalculateFeatureContribution(model, numberOfNegativeContributions: 0)) 37.Append(ML.Transforms.CalculateFeatureContribution(model, numberOfPositiveContributions: 0, numberOfNegativeContributions: 0)); 203.Append(ML.Transforms.CalculateFeatureContribution(model, numberOfPositiveContributions: 1, numberOfNegativeContributions: 1)) 204.Append(ML.Transforms.CalculateFeatureContribution(model, numberOfPositiveContributions: 1, numberOfNegativeContributions: 1, normalize: false)); 227.Append(ML.Transforms.CalculateFeatureContribution(model, numberOfPositiveContributions: 1, numberOfNegativeContributions: 1)) 228.Append(ML.Transforms.CalculateFeatureContribution(model, numberOfPositiveContributions: 1, numberOfNegativeContributions: 1, normalize: false)); 318return pipeline.Append(ML.Transforms.Conversion.ConvertType("Label", outputKind: DataKind.Boolean)) 321return pipeline.Append(ML.Transforms.Conversion.MapValueToKey("Label")) 324return pipeline.Append(ML.Transforms.Conversion.MapValueToKey("GroupId")) 426.Append(ML.Transforms.Categorical.OneHotEncoding(outputColumnName: rateCodeEncoded, inputColumnName: nameof(TaxiTrip.RateCode))) 427.Append(ML.Transforms.Categorical.OneHotEncoding(outputColumnName: paymentTypeEncoded, inputColumnName: nameof(TaxiTrip.PaymentType))) 428.Append(ML.Transforms.NormalizeMeanVariance(outputColumnName: nameof(TaxiTrip.PassengerCount))) 429.Append(ML.Transforms.NormalizeMeanVariance(outputColumnName: nameof(TaxiTrip.TripTime))) 430.Append(ML.Transforms.NormalizeMeanVariance(outputColumnName: nameof(TaxiTrip.TripDistance))) 431.Append(ML.Transforms.Concatenate(DefaultColumnNames.Features, vendorIdEncoded, rateCodeEncoded, paymentTypeEncoded,
ImagesTests.cs (4)
52.Append(new ImagePixelExtractingEstimator(env, "ImagePixels", "ImageReal")) 53.Append(new ImageGrayscalingEstimator(env, ("ImageGray", "ImageReal"))); 76.Append(new ImagePixelExtractingEstimator(env, "ImagePixels", "ImageReal")) 77.Append(new ImageGrayscalingEstimator(env, ("ImageGray", "ImageReal")));
OnnxConversionTest.cs (19)
79.Append(mlContext.Regression.Trainers.Sdca(new SdcaRegressionTrainer.Options() 249var pipeline = initialPipeline.Append(estimator); 313var pipelineEstimators = initialPipeline.Append(estimator).Append(calibrator); 391new TextNormalizingEstimator(mlContext, keepDiacritics: true, caseMode: TextNormalizingEstimator.CaseMode.Upper, columns: new[] { ("UpperText", "text") })).Append( 575.Append(mlContext.Regression.Trainers.Sdca(new SdcaRegressionTrainer.Options() 606.Append(mlContext.Regression.Trainers.LightGbm(labelColumnName: "Target", featureColumnName: "FeatureVector", numberOfIterations: 3, numberOfLeaves: 16, minimumExampleCountPerLeaf: 100)); 630Append(mlContext.Transforms.Conversion.MapValueToKey("Label")). 631Append(mlContext.MulticlassClassification.Trainers.LbfgsMaximumEntropy(new LbfgsMaximumEntropyMulticlassTrainer.Options() { NumberOfThreads = 1 })); 794.Append(mlContext.Transforms.Concatenate("Features", "F1", "F2")) 795.Append(mlContext.Transforms.NormalizeMinMax("Features")) 796.Append(mlContext.BinaryClassification.Trainers.FastTree(labelColumnName: "Label", featureColumnName: "Features", numberOfLeaves: 2, numberOfTrees: 1, minimumExampleCountPerLeaf: 2)); 1480.Append(mlContext.Transforms.Text.ProduceNgrams("NGrams", "Tokens", 1682.Append(mlContext.Transforms.Conversion.MapValueToKey("Label")); 1686var pipeline = initialPipeline.Append(estimator); 1960var pipeline = initialPipeline.Append(estimator); 2007.Append(mlContext.Transforms.Conversion.MapValueToKey("Label")); 2011var pipeline = initialPipeline.Append(estimator); 2202var chain = new EstimatorChain<ITransformer>().Append(pipeline);
PermutationFeatureImportanceTests.cs (6)
861return pipeline.Append(ML.Transforms.Conversion.ConvertType("Label", outputKind: DataKind.Boolean)) 864return pipeline.Append(ML.Transforms.Conversion.MapValueToKey("Label")) 867return pipeline.Append(ML.Transforms.Conversion.MapValueToKey("GroupId")) 942return pipeline.Append(ML.Transforms.Conversion.ConvertType("Label", outputKind: DataKind.Boolean)) 947return pipeline.Append(ML.Transforms.Conversion.MapValueToKey("Label")) 951return pipeline.Append(ML.Transforms.Conversion.MapValueToKey("GroupId"))
Scenarios\Api\CookbookSamples\CookbookSamplesDynamicApi.cs (15)
181.Append(mlContext.Regression.Trainers.Sdca(labelColumnName: "Target", featureColumnName: "FeatureVector")); 236.Append(mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy()); 264var finalPipeline = pipeline.Append(mlContext.Transforms.Conversion.MapKeyToValue("Data", "PredictedLabel")); 527.Append(mlContext.Transforms.Text.ProduceWordBags("BagOfWords", "NormalizedMessage")) 530.Append(mlContext.Transforms.Text.ProduceHashedWordBags("BagOfBigrams", "NormalizedMessage", 534.Append(mlContext.Transforms.Text.TokenizeIntoCharactersAsKeys("MessageChars", "Message")) 535.Append(mlContext.Transforms.Text.ProduceNgrams("BagOfTrichar", "MessageChars", 541.Append(mlContext.Transforms.Text.TokenizeIntoWords("TokenizedMessage", "NormalizedMessage")) 542.Append(mlContext.Transforms.Text.ApplyWordEmbedding("Embeddings", "TokenizedMessage", 599.Append(mlContext.Transforms.Categorical.OneHotEncoding("WorkclassOneHot", "Workclass")) 600.Append(mlContext.Transforms.FeatureSelection.SelectFeaturesBasedOnCount("WorkclassOneHotTrimmed", "WorkclassOneHot", count: 10)); 614.Append(mlContext.Transforms.Concatenate("Features", "NumericalFeatures", "CategoricalBag", "WorkclassOneHotTrimmed")) 619.Append(mlContext.BinaryClassification.Trainers.FastTree(numberOfTrees: 50)); 652.Append(mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy()); 781.Append(mlContext.BinaryClassification.Trainers.FastTree(labelColumnName: "Label"));
Scenarios\Api\Estimators\DecomposableTrainAndPredict.cs (2)
35.Append(ml.MulticlassClassification.Trainers.SdcaMaximumEntropy( 37.Append(new KeyToValueMappingEstimator(ml, "PredictedLabel"));
Scenarios\Api\Estimators\Extensibility.cs (3)
43.Append(new ValueToKeyMappingEstimator(ml, "Label"), TransformerScope.TrainTest) 44.Append(ml.MulticlassClassification.Trainers.SdcaMaximumEntropy( 46.Append(new KeyToValueMappingEstimator(ml, "PredictedLabel"));
Scenarios\Api\Estimators\MultithreadedPrediction.cs (1)
33.Append(ml.BinaryClassification.Trainers.SdcaNonCalibrated(
Scenarios\Api\Estimators\PredictAndMetadata.cs (2)
33.Append(ml.MulticlassClassification.Trainers.SdcaMaximumEntropy( 82.Append(mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy(
Scenarios\Api\Estimators\SimpleTrainAndPredict.cs (2)
31.Append(ml.BinaryClassification.Trainers.SdcaNonCalibrated( 68.Append(ml.BinaryClassification.Trainers.SymbolicSgdLogisticRegression(new SymbolicSgdLogisticRegressionBinaryTrainer.Options
Scenarios\IrisPlantClassificationTests.cs (2)
34.Append(mlContext.Transforms.Conversion.MapValueToKey("Label")) 36.Append(mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy(
Scenarios\IrisPlantClassificationWithStringLabelTests.cs (3)
38.Append(mlContext.Transforms.Conversion.MapValueToKey("Label", "IrisPlantType"), TransformerScope.TrainTest) 40.Append(mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy( 42.Append(mlContext.Transforms.Conversion.MapKeyToValue("Plant", "PredictedLabel"));
Scenarios\RegressionTest.cs (7)
29.Append(context.Transforms.Categorical.OneHotEncoding(outputColumnName: "RateCodeEncoded", inputColumnName: "RateCode")) 30.Append(context.Transforms.Categorical.OneHotEncoding(outputColumnName: "PaymentTypeEncoded", inputColumnName: "PaymentType")) 31.Append(context.Transforms.NormalizeMeanVariance(outputColumnName: "PassengerCount")) 32.Append(context.Transforms.NormalizeMeanVariance(outputColumnName: "TripTime")) 33.Append(context.Transforms.NormalizeMeanVariance(outputColumnName: "TripDistance")) 34.Append(context.Transforms.Concatenate("Features", "VendorIdEncoded", "RateCodeEncoded", "PaymentTypeEncoded", "PassengerCount", 38var trainingPipeline = dataProcessPipeline.Append(trainer);
ScenariosWithDirectInstantiation\IrisPlantClassificationTests.cs (2)
32.Append(mlContext.Transforms.Conversion.MapValueToKey("Label")) 34.Append(mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy(
TrainerEstimators\MetalinearEstimators.cs (5)
33.Append(new KeyToValueMappingEstimator(Env, "PredictedLabel")); 50.Append(new KeyToValueMappingEstimator(Env, "PredictedLabel")); 68.Append(ML.Transforms.Conversion.MapKeyToValue("PredictedLabelValue", "PredictedLabel")); 99.Append(ML.MulticlassClassification.Trainers.OneVersusAll(sdcaTrainer)) 100.Append(new KeyToValueMappingEstimator(Env, "PredictedLabel"));
TrainerEstimators\TrainerEstimators.cs (4)
99var pipeWithTrainer = pipe.AppendCacheCheckpoint(Env).Append(trainer); 130var pipeWithTrainer = pipe.AppendCacheCheckpoint(Env).Append(trainer); 172var pipeWithTrainer = pipe.AppendCacheCheckpoint(Env).Append(trainer); 219oneHotPipeline.Append(ML.Transforms.Concatenate("Features", "Features", "LoggedIn"));
TrainerEstimators\TreeEnsembleFeaturizerTest.cs (18)
332.Append(ML.BinaryClassification.Trainers.SdcaLogisticRegression("Label", "CombinedFeatures")); 378.Append(ML.BinaryClassification.Trainers.SdcaLogisticRegression("Label", "CombinedFeatures")); 417.Append(ML.BinaryClassification.Trainers.SdcaLogisticRegression("Label", "CombinedFeatures")); 456.Append(ML.Regression.Trainers.Sdca("Label", "CombinedFeatures")); 494.Append(ML.Regression.Trainers.Sdca("Label", "CombinedFeatures")); 532.Append(ML.Regression.Trainers.Sdca("Label", "CombinedFeatures")); 570.Append(ML.Regression.Trainers.Sdca("Label", "CombinedFeatures")); 608.Append(ML.Regression.Trainers.Sdca("Label", "CombinedFeatures")); 664.Append(ML.Transforms.Concatenate("CombinedFeatures", "Features", "OhMyTrees", "OhMyLeaves", "OhMyPaths")) 665.Append(ML.Regression.Trainers.Sdca("Label", "CombinedFeatures")); 695.Append(ML.Transforms.FeaturizeByFastForestRegression(options)) 696.Append(ML.Transforms.Concatenate("CombinedFeatures", "Features", "OhMyTrees", "OhMyLeaves", "OhMyPaths")) 697.Append(ML.Regression.Trainers.Sdca("Label", "CombinedFeatures")); 741.Append(ML.BinaryClassification.Trainers.SdcaLogisticRegression("Label", "CombinedFeatures")); 752.Append(ML.BinaryClassification.Trainers.SdcaLogisticRegression("Label", "CombinedFeatures")); 805.Append(ML.Transforms.FeaturizeByFastForestRegression(options)) 806.Append(ML.Transforms.Concatenate("CombinedFeatures", "Trees", "Leaves", "Paths")) 807.Append(ML.MulticlassClassification.Trainers.SdcaMaximumEntropy("KeyLabel", "CombinedFeatures"));
TrainerEstimators\TreeEstimators.cs (6)
311.Append(new KeyToValueMappingEstimator(Env, "PredictedLabel")); 351.Append(new KeyToValueMappingEstimator(Env, "PredictedLabel")); 371.Append(new KeyToValueMappingEstimator(Env, "PredictedLabel")); 396.Append(new KeyToValueMappingEstimator(Env, "PredictedLabel")); 415.Append(new KeyToValueMappingEstimator(Env, "PredictedLabel")); 782.Append(ML.Transforms.Conversion.MapKeyToValue("PredictedLabel"));
Transformers\CategoricalHashTests.cs (6)
91.Append(ML.Transforms.Categorical.OneHotHashEncoding("B", "VectorString", outputKind: OneHotEncodingEstimator.OutputKind.Indicator)) 92.Append(ML.Transforms.Categorical.OneHotHashEncoding("C", "VectorString", outputKind: OneHotEncodingEstimator.OutputKind.Bag)) 93.Append(ML.Transforms.Categorical.OneHotHashEncoding("D", "ScalarString", outputKind: OneHotEncodingEstimator.OutputKind.Binary)) 94.Append(ML.Transforms.Categorical.OneHotHashEncoding("E", "VectorString", outputKind: OneHotEncodingEstimator.OutputKind.Binary)) 95.Append(ML.Transforms.Categorical.OneHotHashEncoding("F", "VarVectorString", outputKind: OneHotEncodingEstimator.OutputKind.Bag)) 97.Append(ML.Transforms.Categorical.OneHotHashEncoding("G", "SingleVectorString", outputKind: OneHotEncodingEstimator.OutputKind.Bag));
Transformers\CategoricalTests.cs (8)
111.Append(mlContext.Transforms.Concatenate("Features", new string[] { "A", "B" })) 112.Append(mlContext.Transforms.Conversion.MapValueToKey("Label")) 113.Append(mlContext.Transforms.NormalizeSupervisedBinning("Features", fixZero: false, maximumBinCount: 5, labelColumnName: "Label")) 114.Append(mlContext.Transforms.Categorical.OneHotEncoding("Features", outputKind: OneHotEncodingEstimator.OutputKind.Indicator)); 166.Append(ML.Transforms.Categorical.OneHotEncoding("B", "VectorString", outputKind: OneHotEncodingEstimator.OutputKind.Indicator)) 167.Append(ML.Transforms.Categorical.OneHotEncoding("C", "VectorString", outputKind: OneHotEncodingEstimator.OutputKind.Bag)) 168.Append(ML.Transforms.Categorical.OneHotEncoding("D", "ScalarString", outputKind: OneHotEncodingEstimator.OutputKind.Binary)) 169.Append(ML.Transforms.Categorical.OneHotEncoding("E", "VectorString", outputKind: OneHotEncodingEstimator.OutputKind.Binary));
Transformers\ConcatTests.cs (2)
67.Append(ML.Transforms.Concatenate("f3", "float4", "float1")) 68.Append(ML.Transforms.Concatenate("f4", "float6", "vfloat", "float1"));
Transformers\ExpressionTransformerTests.cs (4)
42Append(ML.Transforms.Expression("Expr3", "(x,y)=>x*y", "Float", "Int")). 43Append(ML.Transforms.Expression("Expr4", "(x,y,z)=>abs(x-y)*z", "Float", "FloatVector", "Double")). 44Append(ML.Transforms.Expression("Expr5", "x=>len(concat(upper(x),lower(x)))", "Text")). 45Append(ML.Transforms.Expression("Expr6", "(x,y)=>right(x,y)", "TextVector", "Int"));
Transformers\FeatureSelectionTests.cs (1)
43.Append(ML.Transforms.FeatureSelection.SelectFeaturesBasedOnCount("bag_of_words_count", "bag_of_words", 10)
Transformers\KeyToVectorEstimatorTests.cs (1)
85.Append(ML.Transforms.Conversion.MapKeyToVector("VectorBaggedString", "B", true));
Transformers\NAReplaceTests.cs (3)
137.Append(ML.Transforms.ReplaceMissingValues("C", "VectorFloat", replacementMode: MissingValueReplacingEstimator.ReplacementMode.Mean)) 138.Append(ML.Transforms.ReplaceMissingValues("D", "VectorDouble", replacementMode: MissingValueReplacingEstimator.ReplacementMode.Minimum)) 139.Append(ML.Transforms.ReplaceMissingValues("E", "VectorDouble", replacementMode: MissingValueReplacingEstimator.ReplacementMode.Mode));
Transformers\NormalizerTests.cs (4)
244.Append(context.Transforms.NormalizeMeanVariance( 247.Append(context.Transforms.NormalizeLogMeanVariance( 250.Append(context.Transforms.NormalizeSupervisedBinning( 668.Append(new VectorWhiteningEstimator(ML, "whitened", "features"));
Transformers\TextFeaturizerTests.cs (6)
471.Append(new KeyToValueMappingEstimator(ML, "chars")); 538.Append(ML.Transforms.Text.RemoveDefaultStopWords("NoDefaultStopwords", "words")) 539.Append(ML.Transforms.Text.RemoveStopWords("NoStopWords", "words", "xbox", "this", "is", "a", "the", "THAT", "bY")); 631.Append(new NgramExtractingEstimator(ML, "ngrams", "terms")) 632.Append(new NgramHashingEstimator(ML, "ngramshash", "terms")) 635.Append(new NgramHashingEstimator(ML, "ngramshashinvert", "terms", maximumNumberOfInverts: 2));
Transformers\TextNormalizer.cs (3)
57new TextNormalizingEstimator(ML, caseMode: TextNormalizingEstimator.CaseMode.Upper, columns: new[] { ("UpperText", "text") })).Append( 58new TextNormalizingEstimator(ML, keepDiacritics: true, columns: new[] { ("WithDiacriticsText", "text") })).Append( 59new TextNormalizingEstimator(ML, keepNumbers: false, columns: new[] { ("NoNumberText", "text") })).Append(
Transformers\WordEmbeddingsTests.cs (2)
43.Append(ML.Transforms.Text.RemoveDefaultStopWords("CleanWords", "Words")); 78.Append(ML.Transforms.Text.RemoveDefaultStopWords("CleanWords", "Words"));
Microsoft.ML.TimeSeries.Tests (3)
TimeSeriesDirectApi.cs (3)
305.Append(new SsaChangePointEstimator(ml, new SsaChangePointDetector.Options() 451.Append(ml.Forecasting.ForecastBySsa("Forecast", "Value", 10, 11, 22, 4, 454.Append(ml.Transforms.Concatenate("Forecast", "Forecast", "ConfidenceLowerBound", "ConfidenceUpperBound"))
Microsoft.ML.TorchSharp.Tests (27)
NerTests.cs (9)
70var estimator = chain.Append(ML.Transforms.Conversion.MapValueToKey("Label", keyData: labels)) 71.Append(ML.MulticlassClassification.Trainers.NamedEntityRecognition(outputColumnName: "outputColumn")) 72.Append(ML.Transforms.Conversion.MapKeyToValue("outputColumn")); 149var estimator = chain.Append(ML.Transforms.Conversion.MapValueToKey("Label", keyData: labels)) 150.Append(ML.MulticlassClassification.Trainers.NamedEntityRecognition(options)) 151.Append(ML.Transforms.Conversion.MapKeyToValue("outputColumn")); 223var estimator = chain.Append(ML.Transforms.Conversion.MapValueToKey("Label", keyData: labels)) 224.Append(ML.MulticlassClassification.Trainers.NamedEntityRecognition(options)) 225.Append(ML.Transforms.Conversion.MapKeyToValue("outputColumn"));
ObjectDetectionTests.cs (12)
46var filteredPipeline = chain.Append(ML.Transforms.Text.TokenizeIntoWords("Labels", separators: new char[] { ',' }), TransformerScope.Training) 47.Append(ML.Transforms.Conversion.MapValueToKey("Labels"), TransformerScope.Training) 48.Append(ML.Transforms.Text.TokenizeIntoWords("Box", separators: new char[] { ',' }), TransformerScope.Training) 49.Append(ML.Transforms.Conversion.ConvertType("Box"), TransformerScope.Training) 50.Append(ML.Transforms.LoadImages("Image", imageFolder, "ImagePath")) 51.Append(ML.MulticlassClassification.Trainers.ObjectDetection("Labels", boundingBoxColumnName: "Box", maxEpoch: 1)) 52.Append(ML.Transforms.Conversion.MapKeyToValue("PredictedLabel")); 65.Append(ML.Transforms.Text.TokenizeIntoWords("Box", separators: new char[] { ',' })) 66.Append(ML.Transforms.Conversion.ConvertType("Box")) 67.Append(ML.Transforms.LoadImages("Image", imageFolder, "ImagePath")) 68.Append(ML.MulticlassClassification.Trainers.ObjectDetection(options)) 69.Append(ML.Transforms.Conversion.MapKeyToValue("PredictedLabel"));
QATests.cs (1)
43var estimator = chain.Append(ML.MulticlassClassification.Trainers.QuestionAnswer(maxEpochs: 1));
TextClassificationTests.cs (5)
98var estimator = chain.Append(ML.Transforms.Conversion.MapValueToKey("Label", "Sentiment"), TransformerScope.TrainTest) 99.Append(ML.MulticlassClassification.Trainers.TextClassification(outputColumnName: "outputColumn")) 100.Append(ML.Transforms.Conversion.MapKeyToValue("outputColumn")); 179.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")); 237.Append(ML.Transforms.Conversion.MapKeyToValue("outputColumn"));
Microsoft.ML.Transforms (4)
Text\WordBagTransform.cs (4)
520chain = chain.Append<ITransformer>(new ValueToKeyMappingEstimator(h, columnOptions.ToArray(), keyData)); 522chain = chain.Append<ITransformer>(new MissingValueDroppingEstimator(h, missingDropColumns.Select(x => (x, x)).ToArray())); 538return chain.Append<ITransformer>(new NgramExtractingEstimator(env, ngramColumns)); 690estimator = estimator.Append<ITransformer>(new ColumnConcatenatingEstimator(env, col.Name, col.Source));