2 writes to MeanSquaredError
Microsoft.ML.Data (2)
Evaluators\Metrics\RegressionMetrics.cs (2)
73MeanSquaredError = Fetch(RegressionEvaluator.L2); 83MeanSquaredError = l2;
60 references to MeanSquaredError
Microsoft.ML.AutoML (5)
API\RegressionExperiment.cs (2)
60/// See <see cref="RegressionMetrics.MeanSquaredError"/>. 475RegressionMetric.MeanSquaredError => metrics.MeanSquaredError,
AutoMLExperiment\IMetricManager.cs (1)
136RegressionMetric.MeanSquaredError => metric.MeanSquaredError,
Experiment\MetricsAgents\RegressionMetricsAgent.cs (1)
32return metrics.MeanSquaredError;
Experiment\Runners\CrossValSummaryRunner.cs (1)
139l2: GetAverageOfNonNaNScores(newMetrics.Select(x => x.MeanSquaredError)),
Microsoft.ML.AutoML.Samples (2)
AutoFit\RecommendationExperiment.cs (1)
87Console.WriteLine($"MeanSquaredError: {metrics.MeanSquaredError}");
AutoFit\RegressionExperiment.cs (1)
71Console.WriteLine($"MeanSquaredError: {metrics.MeanSquaredError}");
Microsoft.ML.AutoML.Tests (1)
AutoFitTests.cs (1)
557Assert.NotEqual(0, metrices.MeanSquaredError);
Microsoft.ML.Data (1)
Evaluators\Metrics\RegressionMetrics.cs (1)
49/// Gets the root mean square loss (or RMS) which is the square root of the L2 loss <see cref="MeanSquaredError"/>.
Microsoft.ML.Fairlearn (2)
Metrics\FairlearnMetricCatalog.cs (2)
237result["MSE"] = DataFrameColumn.Create("MSE", groupMetric.Keys.Select(k => groupMetric[k].MeanSquaredError)); 263{ "MSE", metrics.MeanSquaredError },
Microsoft.ML.IntegrationTests (1)
Common.cs (1)
273Assert.True(metrics.MeanSquaredError >= 0);
Microsoft.ML.Predictor.Tests (1)
TestIniModels.cs (1)
549Assert.Equal(0.025707474358979077, results.MeanSquaredError);
Microsoft.ML.Samples (24)
Dynamic\Trainers\Recommendation\MatrixFactorization.cs (1)
128Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Recommendation\MatrixFactorizationWithOptions.cs (1)
152Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\FastForest.cs (1)
111Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\FastForestWithOptions.cs (1)
124Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\FastTree.cs (1)
111Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\FastTreeTweedie.cs (1)
111Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\FastTreeTweedieWithOptions.cs (1)
126Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\FastTreeWithOptions.cs (1)
127Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\Gam.cs (1)
111Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\GamWithOptions.cs (1)
122Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\LbfgsPoissonRegression.cs (1)
109Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\LbfgsPoissonRegressionWithOptions.cs (1)
123Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\LightGbm.cs (1)
112Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\LightGbmAdvanced.cs (1)
78Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\LightGbmWithOptions.cs (1)
131Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\LightGbmWithOptionsAdvanced.cs (1)
87Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\OnlineGradientDescent.cs (1)
100Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\OnlineGradientDescentWithOptions.cs (1)
116Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\OrdinaryLeastSquares.cs (1)
108Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\OrdinaryLeastSquaresAdvanced.cs (1)
79Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\OrdinaryLeastSquaresWithOptions.cs (1)
120Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\OrdinaryLeastSquaresWithOptionsAdvanced.cs (1)
83Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\Sdca.cs (1)
108Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Dynamic\Trainers\Regression\SdcaWithOptions.cs (1)
124Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Microsoft.ML.Tests (19)
TrainerEstimators\MatrixFactorizationTests.cs (7)
138Assert.InRange(metrices.MeanSquaredError, expectedLinuxMeanSquaredError - linuxTolerance, expectedLinuxMeanSquaredError + linuxTolerance); 144Assert.InRange(metrices.MeanSquaredError, expectedMacMeanSquaredError - windowsAndMacTolerance, expectedMacMeanSquaredError + windowsAndMacTolerance); 150Assert.InRange(metrices.MeanSquaredError, expectedWindowsMeanSquaredError - windowsAndMacTolerance, expectedWindowsMeanSquaredError + windowsAndMacTolerance); 251Assert.True(metrics.MeanSquaredError < 0.1); 362Assert.InRange(metrics.MeanSquaredError, 0, 0.1); 475Assert.InRange(metrics.MeanSquaredError, 0, 0.0016); 619Assert.InRange(metrics.MeanSquaredError, 0, 0.0016);
TrainerEstimators\TreeEnsembleFeaturizerTest.cs (12)
462Assert.True(metrics.MeanSquaredError < 0.05); 500Assert.True(metrics.MeanSquaredError < 0.1); 538Assert.True(metrics.MeanSquaredError < 0.1); 576Assert.True(metrics.MeanSquaredError < 0.1); 614Assert.True(metrics.MeanSquaredError < 0.1); 631Assert.Equal(metrics.MeanSquaredError, loadedMetrics.MeanSquaredError, 0.00001); 671Assert.True(metrics.MeanSquaredError < 0.1); 691Assert.Equal(metrics.MeanSquaredError, loadedMetrics.MeanSquaredError, 0.00001); 705Assert.NotEqual(metrics.MeanSquaredError, secondMetrics.MeanSquaredError);
Microsoft.ML.Transforms (4)
MetricStatistics.cs (2)
96/// Summary statistics for <see cref="RegressionMetrics.MeanSquaredError"/>. 131MeanSquaredError.Add(metrics.MeanSquaredError);
PermutationFeatureImportanceExtensions.cs (2)
166l2: a.MeanSquaredError - b.MeanSquaredError,