|
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.Recommendation
{
public static class MatrixFactorization
{
// This example requires installation of additional nuget package at
// for Microsoft.ML.Recommender at
// https://www.nuget.org/packages/Microsoft.ML.Recommender/
// In this example we will create in-memory data and then use it to train
// a matrix factorization model with default parameters. Afterward, quality
// metrics are reported.
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateMatrix();
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline = mlContext.Recommendation().Trainers.
MatrixFactorization(nameof(MatrixElement.Value),
nameof(MatrixElement.MatrixColumnIndex),
nameof(MatrixElement.MatrixRowIndex), 10, 0.2, 1);
// Train the model.
var model = pipeline.Fit(trainingData);
// Run the model on training data set.
var transformedData = model.Transform(trainingData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<MatrixElement>(transformedData,
reuseRowObject: false).Take(5).ToList();
// Look at 5 predictions for the Label, side by side with the actual
// Label for comparison.
foreach (var p in predictions)
Console.WriteLine($"Actual value: {p.Value:F3}," +
$"Predicted score: {p.Score:F3}");
// Expected output:
// Actual value: 0.000, Predicted score: 1.234
// Actual value: 1.000, Predicted score: 0.792
// Actual value: 2.000, Predicted score: 1.831
// Actual value: 3.000, Predicted score: 2.670
// Actual value: 4.000, Predicted score: 2.362
// Evaluate the overall metrics
var metrics = mlContext.Regression.Evaluate(transformedData,
labelColumnName: nameof(MatrixElement.Value),
scoreColumnName: nameof(MatrixElement.Score));
PrintMetrics(metrics);
// Expected output:
// Mean Absolute Error: 0.67:
// Mean Squared Error: 0.79
// Root Mean Squared Error: 0.89
// RSquared: 0.61 (closer to 1 is better. The worst case is 0)
}
// The following variables are used to define the shape of the example
// matrix. Its shape is MatrixRowCount-by-MatrixColumnCount. Because in
// ML.NET key type's minimal value is zero, the first row index is always
// zero in C# data structure (e.g., MatrixColumnIndex=0 and MatrixRowIndex=0
// in MatrixElement below specifies the value at the upper-left corner in
// the training matrix). If user's row index starts with 1, their row index
// 1 would be mapped to the 2nd row in matrix factorization module and their
// first row may contain no values. This behavior is also true to column
// index.
private const uint MatrixColumnCount = 60;
private const uint MatrixRowCount = 100;
// Generate a random matrix by specifying all its elements.
private static List<MatrixElement> GenerateMatrix()
{
var dataMatrix = new List<MatrixElement>();
for (uint i = 0; i < MatrixColumnCount; ++i)
for (uint j = 0; j < MatrixRowCount; ++j)
dataMatrix.Add(new MatrixElement()
{
MatrixColumnIndex = i,
MatrixRowIndex = j,
Value = (i + j) % 5
});
return dataMatrix;
}
// A class used to define a matrix element and capture its prediction
// result.
private class MatrixElement
{
// Matrix column index. Its allowed range is from 0 to
// MatrixColumnCount - 1.
[KeyType(MatrixColumnCount)]
public uint MatrixColumnIndex { get; set; }
// Matrix row index. Its allowed range is from 0 to MatrixRowCount - 1.
[KeyType(MatrixRowCount)]
public uint MatrixRowIndex { get; set; }
// The actual value at the MatrixColumnIndex-th column and the
// MatrixRowIndex-th row.
public float Value { get; set; }
// The predicted value at the MatrixColumnIndex-th column and the
// MatrixRowIndex-th row.
public float Score { get; set; }
}
// Print some evaluation metrics to regression problems.
private static void PrintMetrics(RegressionMetrics metrics)
{
Console.WriteLine("Mean Absolute Error: " + metrics.MeanAbsoluteError);
Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Console.WriteLine("Root Mean Squared Error: " +
metrics.RootMeanSquaredError);
Console.WriteLine("RSquared: " + metrics.RSquared);
}
}
}
|