96 writes to Label
Microsoft.ML.Data (2)
Transforms\NormalizeColumn.cs (2)
110[TGUI(Label = "Max number of bins")] 233[TGUI(Label = "Max number of bins")]
Microsoft.ML.Ensemble (33)
OutputCombiners\BaseStacking.cs (1)
22[TGUI(Label = "Validation Dataset Proportion")]
OutputCombiners\MultiStacking.cs (1)
47[TGUI(Label = "Base predictor")]
OutputCombiners\MultiWeightedAverage.cs (3)
48[TGUI(Label = "Metric Name", Description = "The weights are calculated according to the selected metric")] 100[TGUI(Label = MulticlassClassificationEvaluator.AccuracyMicro)] 102[TGUI(Label = MulticlassClassificationEvaluator.AccuracyMacro)]
OutputCombiners\RegressionStacking.cs (1)
45[TGUI(Label = "Base predictor")]
OutputCombiners\Stacking.cs (1)
44[TGUI(Label = "Base predictor")]
OutputCombiners\WeightedAverage.cs (7)
43[TGUI(Label = "Weightage Name", Description = "The weights are calculated according to the selected metric")] 98[TGUI(Label = BinaryClassifierEvaluator.Accuracy)] 100[TGUI(Label = BinaryClassifierEvaluator.Auc)] 102[TGUI(Label = BinaryClassifierEvaluator.PosPrecName)] 104[TGUI(Label = BinaryClassifierEvaluator.PosRecallName)] 106[TGUI(Label = BinaryClassifierEvaluator.NegPrecName)] 108[TGUI(Label = BinaryClassifierEvaluator.NegRecallName)]
Selector\SubModelSelector\BestDiverseSelectorBinary.cs (1)
29[TGUI(Label = "Diversity Measure Type")]
Selector\SubModelSelector\BestDiverseSelectorMulticlass.cs (1)
30[TGUI(Label = "Diversity Measure Type")]
Selector\SubModelSelector\BestDiverseSelectorRegression.cs (1)
29[TGUI(Label = "Diversity Measure Type")]
Selector\SubModelSelector\BestPerformanceRegressionSelector.cs (1)
25[TGUI(Label = "Metric Name")]
Selector\SubModelSelector\BestPerformanceSelector.cs (1)
25[TGUI(Label = "Metric Name")]
Selector\SubModelSelector\BestPerformanceSelectorMulticlass.cs (1)
25[TGUI(Label = "Metric Name")]
Selector\SubModelSelector\SubModelDataSelector.cs (2)
18[TGUI(Label = "Learners Selection Proportion")] 23[TGUI(Label = "Validation Dataset Proportion")]
Trainer\Binary\EnsembleTrainer.cs (2)
42[TGUI(Label = "Sub-Model Selector(pruning) Type", 47[TGUI(Label = "Output combiner", Description = "Output combiner type")]
Trainer\EnsembleTrainerBase.cs (5)
30[TGUI(Label = "Number of Models per batch")] 34[TGUI(Label = "Batch Size", 40[TGUI(Label = "Sampling Type", Description = "Subset Selection Algorithm to induce the base learner.Sub-settings can be used to select the features")] 44[TGUI(Label = "Train parallel", Description = "All the base learners will run asynchronously if the value is true")] 50[TGUI(Label = "Show Sub-Model Metrics")]
Trainer\Multiclass\MulticlassDataPartitionEnsembleTrainer.cs (2)
44[TGUI(Label = "Sub-Model Selector(pruning) Type", Description = "Algorithm to prune the base learners for selective Ensemble")] 48[TGUI(Label = "Output combiner", Description = "Output combiner type")]
Trainer\Regression\RegressionEnsembleTrainer.cs (2)
38[TGUI(Label = "Sub-Model Selector(pruning) Type", Description = "Algorithm to prune the base learners for selective Ensemble")] 42[TGUI(Label = "Output combiner", Description = "Output combiner type")]
Microsoft.ML.FastTree (5)
FastTreeArguments.cs (4)
70[TGUI(Label = "Optimize for unbalanced")] 695[TGUI(Label = "Early Stopping Rule", Description = "Early stopping rule. (Validation set (/valid) is required.)")] 755[TGUI(Label = "Learning Rate", SuggestedSweeps = "0.025-0.4;log")] 763[TGUI(Label = "Shrinkage", SuggestedSweeps = "0.25-4;log")]
GamClassification.cs (1)
70[TGUI(Label = "Optimize for unbalanced")]
Microsoft.ML.ImageAnalytics (3)
ImageResizer.cs (3)
381[TGUI(Label = "Isotropic with Padding")] 387[TGUI(Label = "Isotropic with Cropping")] 393[TGUI(Label = "Ignore aspect ratio and squeeze/stretch into target dimensions")]
Microsoft.ML.KMeansClustering (4)
KMeansPlusPlusTrainer.cs (4)
126[TGUI(Label = "Optimization Tolerance", Description = "Threshold for trainer convergence")] 133[TGUI(Label = "Max Number of Iterations")] 141[TGUI(Label = "Memory Budget (in MBs) for KMeans Acceleration")] 148[TGUI(Label = "Number of threads")]
Microsoft.ML.LightGbm (9)
LightGbmArguments.cs (2)
150[TGUI(Label = "Lambda(L2)", SuggestedSweeps = "0,0.5,1")] 164[TGUI(Label = "Alpha(L1)", SuggestedSweeps = "0,0.5,1")]
LightGbmBinaryTrainer.cs (1)
159[TGUI(Label = "Sigmoid", SuggestedSweeps = "0.5,1")]
LightGbmMulticlassTrainer.cs (1)
102[TGUI(Label = "Sigmoid", SuggestedSweeps = "0.5,1")]
LightGbmRankingTrainer.cs (2)
132[TGUI(Label = "Ranking Label Gain")] 139[TGUI(Label = "Sigmoid", SuggestedSweeps = "0.5,1")]
LightGbmTrainerBase.cs (3)
83[TGUI(Label = "Number of boosting iterations", SuggestedSweeps = "10,20,50,100,150,200")] 96[TGUI(Label = "Learning Rate", SuggestedSweeps = "0.025-0.4;log")] 114[TGUI(Label = "Min Documents In Leaves", SuggestedSweeps = "1,10,20,50 ")]
Microsoft.ML.Mkl.Components (2)
VectorWhitening.cs (2)
42[TGUI(Label = "PCA whitening")] 46[TGUI(Label = "ZCA whitening")]
Microsoft.ML.StandardTrainers (22)
Standard\LogisticRegression\LbfgsPredictorBase.cs (5)
46[TGUI(Label = "L2 Weight", Description = "Weight of L2 regularizer term", SuggestedSweeps = "0,0.1,1")] 55[TGUI(Label = "L1 Weight", Description = "Weight of L1 regularizer term", SuggestedSweeps = "0,0.1,1")] 65[TGUI(Label = "Optimization Tolerance", Description = "Threshold for optimizer convergence", SuggestedSweeps = "1e-4,1e-7")] 83[TGUI(Label = "Max Number of Iterations")] 113[TGUI(Label = "Initial Weights Scale", SuggestedSweeps = "0,0.1,0.5,1")]
Standard\MulticlassClassification\MetaMulticlassTrainer.cs (1)
24[TGUI(Label = "Predictor Type", Description = "Type of underlying binary predictor")]
Standard\MulticlassClassification\OneVersusAllTrainer.cs (1)
106[TGUI(Label = "Use Probability", Description = "Use probabilities (vs. raw outputs) to identify top-score category")]
Standard\Online\AveragedLinear.cs (3)
28[TGUI(Label = "Learning rate", SuggestedSweeps = "0.01,0.1,0.5,1.0")] 41[TGUI(Label = "Decrease Learning Rate", Description = "Decrease learning rate as iterations progress")] 70[TGUI(Label = "L2 Regularization Weight")]
Standard\Online\LinearSvm.cs (1)
90[TGUI(Label = "Batch Size")]
Standard\Online\OnlineGradientDescent.cs (1)
73[TGUI(Label = "Loss Function")]
Standard\Online\OnlineLinear.cs (2)
28[TGUI(Label = "Number of Iterations", Description = "Number of training iterations through data", SuggestedSweeps = "1,10,100")] 48[TGUI(Label = "Initial Weights Scale", SuggestedSweeps = "0,0.1,0.5,1")]
Standard\SdcaBinary.cs (8)
164[TGUI(Label = "L2 Regularizer Constant", SuggestedSweeps = "<Auto>,1e-7,1e-6,1e-5,1e-4,1e-3,1e-2")] 175[TGUI(Label = "L1 Soft Threshold", SuggestedSweeps = "<Auto>,0,0.25,0.5,0.75,1")] 187[TGUI(Label = "Number of threads", SuggestedSweeps = "<Auto>,1,2,4")] 206[TGUI(Label = "Max number of iterations", SuggestedSweeps = "<Auto>,10,20,100")] 1841[TGUI(Label = "L2 Regularization Constant", SuggestedSweeps = "1e-7,5e-7,1e-6,5e-6,1e-5")] 1853[TGUI(Label = "Number of threads", SuggestedSweeps = "1,2,4")] 1873[TGUI(Label = "Max number of iterations", SuggestedSweeps = "1,5,10,20")] 1882[TGUI(Label = "Initial Learning Rate (for SGD)")]
Microsoft.ML.Transforms (16)
OneHotEncoding.cs (4)
209[TGUI(Label = "Output is a bag (multi-set) vector")] 215[TGUI(Label = "Output is an indicator vector")] 221[TGUI(Label = "Output is a key value")] 227[TGUI(Label = "Output is binary encoded")]
Text\TextFeaturizingEstimator.cs (2)
203[TGUI(Label = "Word Gram Extractor")] 244[TGUI(Label = "Char Gram Extractor")]
Text\WordEmbeddingsExtractor.cs (10)
838[TGUI(Label = "GloVe 50D")] 844[TGUI(Label = "GloVe 100D")] 850[TGUI(Label = "GloVe 200D")] 856[TGUI(Label = "GloVe 300D")] 862[TGUI(Label = "GloVe Twitter 25D")] 868[TGUI(Label = "GloVe Twitter 50D")] 874[TGUI(Label = "GloVe Twitter 100D")] 880[TGUI(Label = "GloVe Twitter 200D")] 886[TGUI(Label = "fastText Wikipedia 300D")] 892[TGUI(Label = "Sentiment-Specific Word Embedding")]