Implemented interface member:
method
Fit
Microsoft.ML.IEstimator<TTransformer>.Fit(Microsoft.ML.IDataView)
166 references to Fit
Microsoft.ML.AutoML (1)
Utils\SplitUtil.cs (1)
67return context.Transforms.DropColumns(columnsToDrop.ToArray()).Fit(data).Transform(data);
Microsoft.ML.AutoML.Tests (1)
UserInputValidationTests.cs (1)
360trainingData = convertLabelToBoolEstimator.Fit(trainingData).Transform(trainingData);
Microsoft.ML.Core.Tests (1)
UnitTests\TestCustomTypeRegister.cs (1)
186var model = heroEstimator.Fit(tribeDataView);
Microsoft.ML.Data (2)
DataLoadSave\DataOperationsCatalog.cs (1)
580data = new ColumnCopyingEstimator(env, (splitColumnName, samplingKeyColumn)).Fit(data).Transform(data);
DataLoadSave\TrivialEstimator.cs (1)
11/// the transformer and returns it on every call to <see cref="Fit(IDataView)"/>.
Microsoft.ML.Fairlearn (1)
Metrics\FairlearnMetricCatalog.cs (1)
69var data = convertToString.Fit(_eval).Transform(_eval);
Microsoft.ML.IntegrationTests (11)
DataTransformation.cs (2)
64var transformedData = pipeline.Fit(data).Transform(data); 110var transformedData = pipeline.Fit(data).Transform(data);
Explainability.cs (4)
186var outputData = featureContributions.Fit(scoredData).Transform(scoredData); 223var outputData = featureContributions.Fit(scoredData).Transform(scoredData); 260var outputData = featureContributions.Fit(scoredData).Transform(scoredData); 298var outputData = featureContributions.Fit(scoredData).Transform(scoredData);
ONNX.cs (4)
61var onnxModel = onnxEstimator.Fit(data); 107var onnxModel = onnxEstimator.Fit(data); 112mlContext.Transforms.CopyColumns("Score", "Score").Fit(onnxModel.Transform(data))); 159var onnxModel = onnxEstimator.Fit(data);
SchemaDefinitionTests.cs (1)
89model = model.Append(custom.Fit(model.Transform(loader.Load(data))) as ITransformer);
Microsoft.ML.OnnxTransformerTest (16)
OnnxTransformTests.cs (16)
169var onnxTransformer = pipe.Fit(invalidDataWrongVectorSize); 197var transformer = est.Fit(dataView); 370var onnxTransformer = pipeline.Fit(dataView); 409var onnxTransformer = pipeline.Fit(dataView); 437var onnxTransformer = pipeline.Fit(dataView); 477var onnxTransformer = pipeline.Fit(dataView); 503onnxTransformer = pipeline.Fit(dataView); 537var onnxTransformer = pipeline.Fit(idv); 563var onnxTransformer = pipeline.Fit(idv); 695var onnxTransformer = pipeline.Fit(dataView); 748var onnxTransformer = pipeline.Fit(dataView); 862var model = pipeline.Fit(dataView); 912onnxTransformer[0] = pipeline[0].Fit(dataView); 919onnxTransformer[1] = pipeline[1].Fit(dataView); 924onnxTransformer[2] = pipeline[2].Fit(dataView); 1075var model = pipeline.Fit(dataView);
Microsoft.ML.Samples (33)
Dynamic\ModelOperations\OnnxConversion.cs (1)
86using var onnxTransformer = onnxEstimator.Fit(trainTestOriginalData.TrainSet);
Dynamic\SimpleDataViewImplementation.cs (1)
37"TokenizedText", "Text").Fit(dataView).Transform(dataView);
Dynamic\Transforms\ApplyOnnxModel.cs (1)
30var transformedValues = pipeline.Fit(data).Transform(data);
Dynamic\Transforms\CalculateFeatureContribution.cs (1)
53.CalculateFeatureContribution(linearModel, normalize: false).Fit(
Dynamic\Transforms\CalculateFeatureContributionCalibrated.cs (1)
56.Fit(simpleScoredDataset);
Dynamic\Transforms\Conversion\ConvertType.cs (1)
27var transformer = pipeline.Fit(data);
Dynamic\Transforms\Conversion\ConvertTypeMultiColumn.cs (1)
50var transformer = pipeline.Fit(data);
Dynamic\Transforms\Conversion\MapKeyToBinaryVector.cs (1)
39IDataView transformedData = pipeline.Fit(data).Transform(data);
Dynamic\Transforms\Conversion\MapKeyToValueMultiColumn.cs (1)
54var transformedData = newPipeline.Fit(dataWithPredictions).Transform(
Dynamic\Transforms\Conversion\MapKeyToVectorMultiColumn.cs (1)
40IDataView transformedData = pipeline.Fit(data).Transform(data);
Dynamic\Transforms\Conversion\MapValueIdvLookup.cs (1)
51IDataView transformedData = pipeline.Fit(data).Transform(data);
Dynamic\Transforms\Conversion\MapValueToArray.cs (1)
48IDataView transformedData = pipeline.Fit(data).Transform(data);
Dynamic\Transforms\CopyColumns.cs (1)
52var transformedData = pipeline.Fit(dataview).Transform(dataview);
Dynamic\Transforms\CustomMapping.cs (1)
44var transformer = pipeline.Fit(data);
Dynamic\Transforms\CustomMappingSaveAndLoad.cs (1)
42var transformer = pipeline.Fit(data);
Dynamic\Transforms\CustomMappingWithInMemoryCustomType.cs (1)
33var model = pipeline.Fit(tribeDataView);
Dynamic\Transforms\DropColumns.cs (1)
47var transformedData = pipeline.Fit(dataview).Transform(dataview);
Dynamic\Transforms\ImageAnalytics\ConvertToGrayScaleInMemory.cs (1)
27var model = pipeline.Fit(data);
Dynamic\Transforms\ImageAnalytics\LoadImages.cs (1)
47var transformedData = pipeline.Fit(data).Transform(data);
Dynamic\Transforms\IndicateMissingValues.cs (1)
35var tansformer = pipeline.Fit(data);
Dynamic\Transforms\IndicateMissingValuesMultiColumn.cs (1)
43var tansformer = pipeline.Fit(data);
Dynamic\Transforms\NormalizeGlobalContrast.cs (1)
33var tansformer = approximation.Fit(data);
Dynamic\Transforms\NormalizeLpNorm.cs (1)
34var tansformer = approximation.Fit(data);
Dynamic\Transforms\SelectColumns.cs (1)
47var transformedData = pipeline.Fit(dataview).Transform(dataview);
Dynamic\Transforms\StatefulCustomMapping.cs (1)
58var transformer = pipeline.Fit(data);
Dynamic\Transforms\Text\NormalizeText.cs (1)
33var normTextTransformer = normTextPipeline.Fit(emptyDataView);
Dynamic\Transforms\Text\TokenizeIntoWords.cs (1)
33var textTransformer = textPipeline.Fit(emptyDataView);
Dynamic\Transforms\TimeSeries\DetectAnomalyBySrCnn.cs (1)
42outputColumnName, inputColumnName, 16, 5, 5, 3, 8, 0.35).Fit(
Dynamic\Transforms\TimeSeries\DetectAnomalyBySrCnnBatchPrediction.cs (1)
38outputColumnName, inputColumnName, 16, 5, 5, 3, 8, 0.35).Fit(
Dynamic\Transforms\TimeSeries\DetectIidChangePoint.cs (1)
58outputColumnName, inputColumnName, 95.0d, Size / 4).Fit(dataView);
Dynamic\Transforms\TimeSeries\DetectIidChangePointBatchPrediction.cs (1)
56outputColumnName, inputColumnName, 95.0d, Size / 4).Fit(dataView)
Dynamic\Transforms\TimeSeries\DetectIidSpike.cs (1)
50inputColumnName, 95.0d, Size).Fit(dataView);
Dynamic\Transforms\TimeSeries\DetectIidSpikeBatchPrediction.cs (1)
48inputColumnName, 95.0d, Size / 4).Fit(dataView).Transform(dataView);
Microsoft.ML.TensorFlow.Tests (10)
TensorflowTests.cs (10)
509var pixels = _mlContext.Transforms.ExtractPixels("image_tensor", "ImageCropped", outputAsFloatArray: false).Fit(cropped).Transform(cropped); 553var images = _mlContext.Transforms.LoadImages("ImageReal", "ImagePath", imageFolder).Fit(data).Transform(data); 554var cropped = _mlContext.Transforms.ResizeImages("ImageCropped", 224, 224, "ImageReal").Fit(images).Transform(images); 555var pixels = _mlContext.Transforms.ExtractPixels(inputName, "ImageCropped", interleavePixelColors: true).Fit(cropped).Transform(cropped); 1076var images = _mlContext.Transforms.LoadImages("ImageReal", imageFolder, "ImagePath").Fit(data).Transform(data); 1077var cropped = _mlContext.Transforms.ResizeImages("ImageCropped", imageWidth, imageHeight, "ImageReal").Fit(images).Transform(images); 1078var pixels = _mlContext.Transforms.ExtractPixels("Input", "ImageCropped", interleavePixelColors: true).Fit(cropped).Transform(cropped); 1493.Fit(testDataset) 1625.Fit(testDataset) 1782.Fit(testDataset)
Microsoft.ML.TestFramework (1)
DataPipe\TestDataPipe.cs (1)
859view2 = ML.Transforms.SelectColumns(colsChoose).Fit(view2).Transform(view2);
Microsoft.ML.Tests (80)
ImagesTests.cs (2)
242var model = pipeline.Fit(data); 1186var model = pipeline.Fit(dataView);
OnnxConversionTest.cs (10)
827var onnxTransformer = onnxEstimator.Fit(data); 989var onnxTransformer = onnxEstimator.Fit(dataView); 1516var onnxTransformer = onnxEstimator.Fit(dataView); 1633var onnxTransformer = onnxEstimator.Fit(dataView); 1726var mlmodel = mlpipeline.Fit(dataView); 1744var loadedModel = pipeline.Fit(dataView); 1792var model = pipeline2.Fit(reloadedData); 1807var onnxTransformer = onnxEstimator.Fit(reloadedData); 1820var onnxTransformer2 = onnxEstimator2.Fit(originalData); 2255var onnxTransformer = onnxEstimator.Fit(dataView);
OnnxSequenceTypeWithAttributesTest.cs (2)
52var model = pipeline.Fit(dataView); 91var model = pipeline.Fit(dataView);
Scenarios\Api\CookbookSamples\CookbookSamplesDynamicApi.cs (2)
474var featureContributionData = featureContributionCalculation.Fit(transfomedData).Transform(transfomedData); 771return estimator.Fit(data).Transform(data);
Scenarios\Api\TestApi.cs (1)
180xf = mlContext.Transforms.Conversion.ConvertType("Label", outputKind: DataKind.Boolean).Fit(xf).Transform(xf);
TrainerEstimators\SdcaTests.cs (1)
29.Fit(data).Transform(data);
Transformers\CategoricalHashTests.cs (1)
103var view = ML.Transforms.SelectColumns("A", "B", "C", "D", "E", "F").Fit(savedData).Transform(savedData);
Transformers\CategoricalTests.cs (1)
175var view = ML.Transforms.SelectColumns("A", "B", "C", "D", "E").Fit(savedData).Transform(savedData);
Transformers\CharTokenizeTests.cs (1)
63var result = pipe.Fit(dataView).Transform(dataView);
Transformers\ConcatTests.cs (2)
83data = ML.Transforms.SelectColumns("f1", "f2", "f3", "f4").Fit(data).Transform(data); 147data = ML.Transforms.SelectColumns("f2", "f3").Fit(data).Transform(data);
Transformers\ConvertTests.cs (4)
187var actualConvertedValues = allTypesPipe.Fit(allTypesDataView).Transform(allTypesDataView); 262var convertedValues = allInputTypesDataPipe.Fit(allInputTypesDataView).Transform(allInputTypesDataView); 323var result = pipe.Fit(dataView).Transform(dataView); 401DataKind.UInt64, "key", new KeyCount(4)) }).Fit(dataView);
Transformers\CopyColumnEstimatorTests.cs (6)
51var transformer = est.Fit(dataView); 65var transformer = est.Fit(dataView); 82var transformer = est.Fit(dataView); 100var transformer = est.Fit(dataView); 118var transformer = est.Fit(dataView); 141var transformer = est.Fit(term);
Transformers\CustomMappingTests.cs (4)
77transformedData = customEst.Fit(data).Transform(data); 106var badData1 = ML.Transforms.CopyColumns("Text1", "Float1").Fit(data).Transform(data); 114var badData2 = ML.Transforms.SelectColumns(new[] { "Float1" }).Fit(data).Transform(data); 183var transformedData = customEst.Fit(data).Transform(data);
Transformers\FeatureSelectionTests.cs (1)
51savedData = ML.Transforms.SelectColumns("bag_of_words_count", "bag_of_words_mi").Fit(savedData).Transform(savedData);
Transformers\KeyToBinaryVectorEstimatorTest.cs (2)
107var result = pipe.Fit(dataView).Transform(dataView); 156var result = pipe.Fit(dataView).Transform(dataView);
Transformers\KeyToValueTests.cs (3)
55IDataView savedData = est.Fit(data).Transform(data); 85var dataLeft = ML.Transforms.SelectColumns(new[] { "ScalarString", "VectorString" }).Fit(data).Transform(data); 86var dataRight = ML.Transforms.SelectColumns(new[] { "ScalarString", "VectorString" }).Fit(data2Transformed).Transform(data2Transformed);
Transformers\KeyToVectorEstimatorTests.cs (2)
125var result = pipe.Fit(dataView).Transform(dataView); 218var result = pipe.Fit(dataView).Transform(dataView);
Transformers\NAIndicatorTests.cs (2)
81var result = pipe.Fit(dataView).Transform(dataView); 117var savedData = ML.Data.TakeRows(est.Fit(data).Transform(data), 4);
Transformers\NAReplaceTests.cs (1)
144var view = ML.Transforms.SelectColumns("A", "B", "C", "D", "E").Fit(savedData).Transform(savedData);
Transformers\NormalizerTests.cs (7)
91var dataView = ML.Transforms.DropColumns(new[] { "float0" }).Fit(transformedData).Transform(transformedData); 676savedData = ML.Transforms.SelectColumns("lpnorm", "gcnorm", "whitened").Fit(savedData).Transform(savedData); 710savedData = ML.Transforms.SelectColumns("whitened1", "whitened2").Fit(savedData).Transform(savedData); 773savedData = ML.Transforms.SelectColumns("lpNorm1", "lpNorm2").Fit(savedData).Transform(savedData); 800var result = pipe.Fit(dataView).Transform(dataView); 833savedData = ML.Transforms.SelectColumns("gcnNorm1", "gcnNorm2").Fit(savedData).Transform(savedData); 860var result = pipe.Fit(dataView).Transform(dataView);
Transformers\PcaTests.cs (1)
61savedData = ML.Transforms.SelectColumns("pca").Fit(savedData).Transform(savedData);
Transformers\SelectColumnsTests.cs (5)
50var transformer = est.Fit(dataView); 71var transformer = est.Fit(dataView); 90var transformer = est.Fit(dataView); 125Assert.Throws<ArgumentOutOfRangeException>(() => est.Fit(dataView)); 180var transformer = est.Fit(dataView);
Transformers\TextFeaturizerTests.cs (8)
445savedData = ML.Transforms.SelectColumns("Data", "OutputTokens").Fit(savedData).Transform(savedData); 476savedData = ML.Transforms.SelectColumns("text", "words", "chars").Fit(savedData).Transform(savedData); 495var outdata = ML.Data.TakeRows(est.Fit(data).Transform(data), 4); 496var savedData = ML.Transforms.SelectColumns("words").Fit(outdata).Transform(outdata); 545savedData = ML.Transforms.SelectColumns("text", "NoDefaultStopwords", "NoStopWords").Fit(savedData).Transform(savedData); 606savedData = ML.Transforms.SelectColumns("text", "bag_of_words", "bag_of_wordshash").Fit(savedData).Transform(savedData); 641savedData = ML.Transforms.SelectColumns("text", "terms", "ngrams", "ngramshash").Fit(savedData).Transform(savedData); 700savedData = ML.Transforms.SelectColumns("topics").Fit(savedData).Transform(savedData);
Transformers\TextNormalizer.cs (1)
84var result = pipe.Fit(dataView).Transform(dataView);
Transformers\ValueMappingTests.cs (6)
67var t = estimator.Fit(dataView); 196var t = estimator.Fit(dataView); 237var t = estimator.Fit(dataView); 278var t = estimator.Fit(dataView); 319var t = estimator.Fit(dataView); 781IDataView transformedData = pipeline.Fit(data).Transform(data);
Transformers\WordEmbeddingsTests.cs (2)
52savedData = ML.Transforms.SelectColumns("WordEmbeddings").Fit(savedData).Transform(savedData); 95savedData = ML.Transforms.SelectColumns("WordEmbeddings", "CleanWords").Fit(savedData).Transform(savedData);
Transformers\WordTokenizeTests.cs (2)
66var result = pipe.Fit(dataView).Transform(dataView); 104var result = pipe.Fit(dataView).Transform(dataView);
Microsoft.ML.TimeSeries (2)
TimeSeriesProcessing.cs (2)
36var view = new IidChangePointEstimator(h, options).Fit(options.Data).Transform(options.Data); 50var view = new IidSpikeEstimator(h, options).Fit(options.Data).Transform(options.Data);
Microsoft.ML.TimeSeries.Tests (4)
TimeSeriesDirectApi.cs (2)
128var detector = new IidChangePointEstimator(env, args).Fit(dataView); 566var transformedData = ml.Transforms.DetectAnomalyBySrCnn(outputColumnName, inputColumnName, 16, 5, 5, 3, 8, 0.35).Fit(dataView).Transform(dataView);
TimeSeriesSimpleApiTests.cs (2)
55var detector = learningPipeline.Fit(dataView); 139var detector = learningPipeline.Fit(dataView);
Microsoft.ML.Transforms (3)
Text\TextFeaturizingEstimator.cs (2)
470tparams.KeepNumbers, xfCols).Fit(view), ref view); 487chain = AddToChainAndTransform(chain, new WordTokenizingEstimator(h, xfCols).Fit(view), ref view);
Text\WordHashBagProducingTransform.cs (1)
135ITransformer t1 = new WordTokenizingEstimator(env, tokenizeColumns.ToArray()).Fit(view);