|
using System;
using System.Collections.Generic;
using Microsoft.ML;
namespace Samples.Dynamic
{
public static class MapValueToArray
{
/// This example demonstrates the use of MapValue by mapping strings to
/// array values, which allows for mapping data to numeric arrays. This
/// functionality is useful when the generated column will serve as the
/// Features column for a trainer. Most of the trainers take a numeric
/// vector, as the Features column. In this example, we are mapping the
/// Timeframe data to arbitrary integer arrays.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable.
var rawData = new[] {
new DataPoint() { Timeframe = "0-4yrs" },
new DataPoint() { Timeframe = "6-11yrs" },
new DataPoint() { Timeframe = "12-25yrs" },
new DataPoint() { Timeframe = "0-5yrs" },
new DataPoint() { Timeframe = "12-25yrs" },
new DataPoint() { Timeframe = "25+yrs" },
};
var data = mlContext.Data.LoadFromEnumerable(rawData);
// Creating a list of key-value pairs to indicate the mapping between
// the DataPoint values, and the arrays they should map to.
var timeframeMap = new Dictionary<string, int[]>();
timeframeMap["0-4yrs"] = new int[] { 0, 5, 300 };
timeframeMap["0-5yrs"] = new int[] { 0, 5, 300 };
timeframeMap["6-11yrs"] = new int[] { 6, 11, 300 };
timeframeMap["12-25yrs"] = new int[] { 12, 50, 300 };
timeframeMap["25+yrs"] = new int[] { 12, 50, 300 };
// Constructs the ValueMappingEstimator making the ML.NET pipeline.
var pipeline = mlContext.Transforms.Conversion.MapValue("Features",
timeframeMap, "Timeframe");
// Fits the ValueMappingEstimator and transforms the data adding the
// Features column.
IDataView transformedData = pipeline.Fit(data).Transform(data);
// Getting the resulting data as an IEnumerable.
IEnumerable<TransformedData> featuresColumn = mlContext.Data
.CreateEnumerable<TransformedData>(transformedData, reuseRowObject:
false);
Console.WriteLine($"Timeframe Features");
foreach (var featureRow in featuresColumn)
Console.WriteLine($"{featureRow.Timeframe}\t\t " +
$"{string.Join(",", featureRow.Features)}");
// Timeframe Features
// 0-4yrs 0, 5, 300
// 6-11yrs 6, 11, 300
// 12-25yrs 12, 50, 300
// 0-5yrs 0, 5, 300
// 12-25yrs 12, 50,300
// 25+yrs 12, 50, 300
}
public class DataPoint
{
public string Timeframe { get; set; }
}
public class TransformedData : DataPoint
{
public int[] Features { get; set; }
}
}
}
|