|
using System;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class ConvertType
{
public static void Example()
{
var mlContext = new MLContext(seed: 1);
var rawData = new[] {
new InputData() { Survived = true },
new InputData() { Survived = false },
new InputData() { Survived = true },
new InputData() { Survived = false },
new InputData() { Survived = false },
};
var data = mlContext.Data.LoadFromEnumerable(rawData);
// Construct the pipeline.
var pipeline = mlContext.Transforms.Conversion.ConvertType(
"SurvivedInt32", "Survived", DataKind.Int32);
// Let's train our pipeline, and then apply it to the same data.
var transformer = pipeline.Fit(data);
var transformedData = transformer.Transform(data);
// Display original column 'Survived' (boolean) and converted column
// SurvivedInt32' (Int32)
var convertedData = mlContext.Data.CreateEnumerable<TransformedData>(
transformedData, true);
foreach (var item in convertedData)
{
Console.WriteLine("A:{0,-10} Aconv:{1}", item.Survived,
item.SurvivedInt32);
}
// Output
// A: True Aconv:1
// A: False Aconv:0
// A: True Aconv:1
// A: False Aconv:0
// A: False Aconv:0
}
private class InputData
{
public bool Survived;
}
private sealed class TransformedData : InputData
{
public Int32 SurvivedInt32 { get; set; }
}
}
}
|