52 references to NumTrees
Microsoft.ML.FastTree (52)
BoostingFastTree.cs (2)
149
bestIteration = Ensemble.
NumTrees
;
156
int bestIteration = Ensemble.
NumTrees
;
FastTree.cs (12)
242
bestIteration = Ensemble.
NumTrees
;
245
private protected virtual int GetBestIteration(IChannel ch) => Ensemble.
NumTrees
;
330
if (Ensemble.
NumTrees
== 0)
614
if (Ensemble.
NumTrees
< numTotalTrees && ShouldRandomStartOptimizer())
648
pch.SetHeader(new ProgressHeader("trees"), e => e.SetProgress(0, Ensemble.
NumTrees
, numTotalTrees));
649
while (Ensemble.
NumTrees
< numTotalTrees)
661
if (FastTreeTrainerOptions.BaggingSize > 0 && Ensemble.
NumTrees
% FastTreeTrainerOptions.BaggingSize == 0)
751
Ensemble.
NumTrees
, bestIteration);
791
int iteration = Ensemble.
NumTrees
;
798
if (FastTreeTrainerOptions.TestFrequency != int.MaxValue && (Ensemble.
NumTrees
% FastTreeTrainerOptions.TestFrequency == 0 || Ensemble.
NumTrees
== FastTreeTrainerOptions.NumberOfTrees))
2791
int ITreeEnsemble.NumTrees => TrainedEnsemble.
NumTrees
;
FastTreeRanking.cs (3)
354
lineBuilder.AppendFormat("Eval:\tnet.{0:D8}.ini", Ensemble.
NumTrees
- 1);
399
double[] trainOutputs = Ensemble.GetTreeAt(Ensemble.
NumTrees
- 1).GetOutputs(TrainSet);
400
_ensembleCompressor.SetTreeScores(Ensemble.
NumTrees
- 1, trainOutputs);
FastTreeRegression.cs (1)
377
lineBuilder.AppendFormat("Eval:\tnet.{0:D8}.ini", Ensemble.
NumTrees
- 1);
FastTreeTweedie.cs (1)
313
lineBuilder.AppendFormat("Eval:\tnet.{0:D8}.ini", Ensemble.
NumTrees
- 1);
RandomForestRegression.cs (2)
225
var numTrees = ctx.AddInitializer((float)TrainedEnsemble.
NumTrees
, "NumTrees");
240
dst = (float)TrainedEnsemble.GetOutput(in src) / TrainedEnsemble.
NumTrees
;
Training\BaggingProvider.cs (1)
81
for (int t = 0; t < ensemble.
NumTrees
; t++)
Training\OptimizationAlgorithms\AcceleratedGradientDescent.cs (5)
48
for (int t = 0; t < Ensemble.
NumTrees
- 1; t++)
50
Ensemble.GetTreeAt(t).ScaleOutputsBy(AgdScoreTracker.TreeMultiplier(t, Ensemble.
NumTrees
) / AgdScoreTracker.TreeMultiplier(t, Ensemble.
NumTrees
- 1));
63
if (bestIteration != Ensemble.
NumTrees
)
68
Ensemble.GetTreeAt(t).ScaleOutputsBy(AgdScoreTracker.TreeMultiplier(t, bestIteration) / AgdScoreTracker.TreeMultiplier(t, Ensemble.
NumTrees
));
Training\OptimizationAlgorithms\GradientDescent.cs (1)
48
int numberOfTrees = Ensemble.
NumTrees
;
Training\OptimizationAlgorithms\OptimizationAlgorithm.cs (1)
120
if (bestIteration != Ensemble.
NumTrees
)
TreeEnsemble\InternalTreeEnsemble.cs (16)
68
writer.Write(
NumTrees
);
79
public void RemoveAfter(int index) => _trees.RemoveRange(index,
NumTrees
- index);
89
for (int i = 0; i <
NumTrees
; i++)
105
for (int i = 0; i <
NumTrees
; i++)
131
for (int w = 0; w <
NumTrees
; ++w)
149
if (
NumTrees
> 0)
155
for (int w = 1; w <
NumTrees
; ++w)
167
if (
NumTrees
> 0)
174
for (int w = 1; w <
NumTrees
; ++w)
191
var gainSummary = ToGainSummary(fmap, featureToID,
NumTrees
, includeZeroGainFeatures,
253
for (int h = 0; h <
NumTrees
; h++)
261
for (int h = 0; h <
NumTrees
; h++)
268
var distribution = new float[sampleCount *
NumTrees
];
271
weights = new float[sampleCount *
NumTrees
];
275
for (int h = 0; h <
NumTrees
; h++)
368
for (int i = 0; i <
NumTrees
; i++)
TreeEnsembleFeaturizer.cs (7)
118
var treeValueType = new VectorDataViewType(NumberDataViewType.Single, owner._ensemble.TrainedEnsemble.
NumTrees
);
129
var pathIdType = new VectorDataViewType(NumberDataViewType.Single, owner._totalLeafCount - owner._ensemble.TrainedEnsemble.
NumTrees
);
249
_ectx.Assert(ensemble.TrainedEnsemble.
NumTrees
> 0);
252
_numTrees = _ensemble.TrainedEnsemble.
NumTrees
;
476
var numTrees = _ensemble.TrainedEnsemble.
NumTrees
;
487
var numTrees = _ensemble.TrainedEnsemble.
NumTrees
;
504
var numTrees = _ensemble.TrainedEnsemble.
NumTrees
;