|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
using System.Buffers.Binary;
using System.Diagnostics.CodeAnalysis;
using System.Globalization;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Runtime.Versioning;
namespace System
{
[Serializable]
[CLSCompliant(false)]
[StructLayout(LayoutKind.Sequential)]
[TypeForwardedFrom("mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089")]
public readonly struct UInt32
: IComparable,
IConvertible,
ISpanFormattable,
IComparable<uint>,
IEquatable<uint>,
IBinaryInteger<uint>,
IMinMaxValue<uint>,
IUnsignedNumber<uint>,
IUtf8SpanFormattable,
IBinaryIntegerParseAndFormatInfo<uint>
{
private readonly uint m_value; // Do not rename (binary serialization)
public const uint MaxValue = (uint)0xffffffff;
public const uint MinValue = 0U;
/// <summary>Represents the additive identity (0).</summary>
private const uint AdditiveIdentity = 0;
/// <summary>Represents the multiplicative identity (1).</summary>
private const uint MultiplicativeIdentity = 1;
/// <summary>Represents the number one (1).</summary>
private const uint One = 1;
/// <summary>Represents the number zero (0).</summary>
private const uint Zero = 0;
/// <summary>Produces the full product of two unsigned 32-bit numbers.</summary>
/// <param name="left">The first number to multiply.</param>
/// <param name="right">The second number to multiply.</param>
/// <returns>The number containing the product of the specified numbers.</returns>
public static ulong BigMul(uint left, uint right) => Math.BigMul(left, right);
// Compares this object to another object, returning an integer that
// indicates the relationship.
// Returns a value less than zero if this object
// null is considered to be less than any instance.
// If object is not of type UInt32, this method throws an ArgumentException.
//
public int CompareTo(object? value)
{
if (value == null)
{
return 1;
}
// Need to use compare because subtraction will wrap
// to positive for very large neg numbers, etc.
if (value is uint i)
{
if (m_value < i) return -1;
if (m_value > i) return 1;
return 0;
}
throw new ArgumentException(SR.Arg_MustBeUInt32);
}
public int CompareTo(uint value)
{
// Need to use compare because subtraction will wrap
// to positive for very large neg numbers, etc.
if (m_value < value) return -1;
if (m_value > value) return 1;
return 0;
}
public override bool Equals([NotNullWhen(true)] object? obj)
{
if (!(obj is uint))
{
return false;
}
return m_value == ((uint)obj).m_value;
}
[NonVersionable]
public bool Equals(uint obj)
{
return m_value == obj;
}
// The absolute value of the int contained.
public override int GetHashCode()
{
return (int)m_value;
}
// The base 10 representation of the number with no extra padding.
public override string ToString()
{
return Number.UInt32ToDecStr(m_value);
}
public string ToString(IFormatProvider? provider)
{
return Number.UInt32ToDecStr(m_value);
}
public string ToString([StringSyntax(StringSyntaxAttribute.NumericFormat)] string? format)
{
return Number.FormatUInt32(m_value, format, null);
}
public string ToString([StringSyntax(StringSyntaxAttribute.NumericFormat)] string? format, IFormatProvider? provider)
{
return Number.FormatUInt32(m_value, format, provider);
}
public bool TryFormat(Span<char> destination, out int charsWritten, [StringSyntax(StringSyntaxAttribute.NumericFormat)] ReadOnlySpan<char> format = default, IFormatProvider? provider = null)
{
return Number.TryFormatUInt32(m_value, format, provider, destination, out charsWritten);
}
/// <inheritdoc cref="IUtf8SpanFormattable.TryFormat" />
public bool TryFormat(Span<byte> utf8Destination, out int bytesWritten, [StringSyntax(StringSyntaxAttribute.NumericFormat)] ReadOnlySpan<char> format = default, IFormatProvider? provider = null)
{
return Number.TryFormatUInt32(m_value, format, provider, utf8Destination, out bytesWritten);
}
public static uint Parse(string s) => Parse(s, NumberStyles.Integer, provider: null);
public static uint Parse(string s, NumberStyles style) => Parse(s, style, provider: null);
public static uint Parse(string s, IFormatProvider? provider) => Parse(s, NumberStyles.Integer, provider);
public static uint Parse(string s, NumberStyles style, IFormatProvider? provider)
{
if (s is null) { ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); }
return Parse(s.AsSpan(), style, provider);
}
public static uint Parse(ReadOnlySpan<char> s, NumberStyles style = NumberStyles.Integer, IFormatProvider? provider = null)
{
NumberFormatInfo.ValidateParseStyleInteger(style);
return Number.ParseBinaryInteger<char, uint>(s, style, NumberFormatInfo.GetInstance(provider));
}
public static bool TryParse([NotNullWhen(true)] string? s, out uint result) => TryParse(s, NumberStyles.Integer, provider: null, out result);
public static bool TryParse(ReadOnlySpan<char> s, out uint result) => TryParse(s, NumberStyles.Integer, provider: null, out result);
/// <summary>Tries to convert a UTF-8 character span containing the string representation of a number to its 32-bit unsigned integer equivalent.</summary>
/// <param name="utf8Text">A span containing the UTF-8 characters representing the number to convert.</param>
/// <param name="result">When this method returns, contains the 32-bit unsigned integer value equivalent to the number contained in <paramref name="utf8Text" /> if the conversion succeeded, or zero if the conversion failed. This parameter is passed uninitialized; any value originally supplied in result will be overwritten.</param>
/// <returns><c>true</c> if <paramref name="utf8Text" /> was converted successfully; otherwise, false.</returns>
public static bool TryParse(ReadOnlySpan<byte> utf8Text, out uint result) => TryParse(utf8Text, NumberStyles.Integer, provider: null, out result);
public static bool TryParse([NotNullWhen(true)] string? s, NumberStyles style, IFormatProvider? provider, out uint result)
{
NumberFormatInfo.ValidateParseStyleInteger(style);
if (s is null)
{
result = 0;
return false;
}
return Number.TryParseBinaryInteger(s.AsSpan(), style, NumberFormatInfo.GetInstance(provider), out result) == Number.ParsingStatus.OK;
}
public static bool TryParse(ReadOnlySpan<char> s, NumberStyles style, IFormatProvider? provider, out uint result)
{
NumberFormatInfo.ValidateParseStyleInteger(style);
return Number.TryParseBinaryInteger(s, style, NumberFormatInfo.GetInstance(provider), out result) == Number.ParsingStatus.OK;
}
//
// IConvertible implementation
//
public TypeCode GetTypeCode()
{
return TypeCode.UInt32;
}
bool IConvertible.ToBoolean(IFormatProvider? provider)
{
return Convert.ToBoolean(m_value);
}
char IConvertible.ToChar(IFormatProvider? provider)
{
return Convert.ToChar(m_value);
}
sbyte IConvertible.ToSByte(IFormatProvider? provider)
{
return Convert.ToSByte(m_value);
}
byte IConvertible.ToByte(IFormatProvider? provider)
{
return Convert.ToByte(m_value);
}
short IConvertible.ToInt16(IFormatProvider? provider)
{
return Convert.ToInt16(m_value);
}
ushort IConvertible.ToUInt16(IFormatProvider? provider)
{
return Convert.ToUInt16(m_value);
}
int IConvertible.ToInt32(IFormatProvider? provider)
{
return Convert.ToInt32(m_value);
}
uint IConvertible.ToUInt32(IFormatProvider? provider)
{
return m_value;
}
long IConvertible.ToInt64(IFormatProvider? provider)
{
return Convert.ToInt64(m_value);
}
ulong IConvertible.ToUInt64(IFormatProvider? provider)
{
return Convert.ToUInt64(m_value);
}
float IConvertible.ToSingle(IFormatProvider? provider)
{
return Convert.ToSingle(m_value);
}
double IConvertible.ToDouble(IFormatProvider? provider)
{
return Convert.ToDouble(m_value);
}
decimal IConvertible.ToDecimal(IFormatProvider? provider)
{
return Convert.ToDecimal(m_value);
}
DateTime IConvertible.ToDateTime(IFormatProvider? provider)
{
throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "UInt32", "DateTime"));
}
object IConvertible.ToType(Type type, IFormatProvider? provider)
{
return Convert.DefaultToType((IConvertible)this, type, provider);
}
//
// IAdditionOperators
//
/// <inheritdoc cref="IAdditionOperators{TSelf, TOther, TResult}.op_Addition(TSelf, TOther)" />
static uint IAdditionOperators<uint, uint, uint>.operator +(uint left, uint right) => left + right;
/// <inheritdoc cref="IAdditionOperators{TSelf, TOther, TResult}.op_Addition(TSelf, TOther)" />
static uint IAdditionOperators<uint, uint, uint>.operator checked +(uint left, uint right) => checked(left + right);
//
// IAdditiveIdentity
//
/// <inheritdoc cref="IAdditiveIdentity{TSelf, TResult}.AdditiveIdentity" />
static uint IAdditiveIdentity<uint, uint>.AdditiveIdentity => AdditiveIdentity;
//
// IBinaryInteger
//
/// <inheritdoc cref="IBinaryInteger{TSelf}.DivRem(TSelf, TSelf)" />
public static (uint Quotient, uint Remainder) DivRem(uint left, uint right) => Math.DivRem(left, right);
/// <inheritdoc cref="IBinaryInteger{TSelf}.LeadingZeroCount(TSelf)" />
[Intrinsic]
public static uint LeadingZeroCount(uint value) => (uint)BitOperations.LeadingZeroCount(value);
/// <inheritdoc cref="IBinaryInteger{TSelf}.PopCount(TSelf)" />
[Intrinsic]
public static uint PopCount(uint value) => (uint)BitOperations.PopCount(value);
/// <inheritdoc cref="IBinaryInteger{TSelf}.RotateLeft(TSelf, int)" />
[Intrinsic]
public static uint RotateLeft(uint value, int rotateAmount) => BitOperations.RotateLeft(value, rotateAmount);
/// <inheritdoc cref="IBinaryInteger{TSelf}.RotateRight(TSelf, int)" />
[Intrinsic]
public static uint RotateRight(uint value, int rotateAmount) => BitOperations.RotateRight(value, rotateAmount);
/// <inheritdoc cref="IBinaryInteger{TSelf}.TrailingZeroCount(TSelf)" />
[Intrinsic]
public static uint TrailingZeroCount(uint value) => (uint)BitOperations.TrailingZeroCount(value);
/// <inheritdoc cref="IBinaryInteger{TSelf}.TryReadBigEndian(ReadOnlySpan{byte}, bool, out TSelf)" />
static bool IBinaryInteger<uint>.TryReadBigEndian(ReadOnlySpan<byte> source, bool isUnsigned, out uint value)
{
uint result = default;
if (source.Length != 0)
{
if (!isUnsigned && sbyte.IsNegative((sbyte)source[0]))
{
// When we are signed and the sign bit is set, we are negative and therefore
// definitely out of range
value = result;
return false;
}
if ((source.Length > sizeof(uint)) && (source[..^sizeof(uint)].ContainsAnyExcept((byte)0x00)))
{
// When we have any non-zero leading data, we are a large positive and therefore
// definitely out of range
value = result;
return false;
}
ref byte sourceRef = ref MemoryMarshal.GetReference(source);
if (source.Length >= sizeof(uint))
{
sourceRef = ref Unsafe.Add(ref sourceRef, source.Length - sizeof(uint));
// We have at least 4 bytes, so just read the ones we need directly
result = Unsafe.ReadUnaligned<uint>(ref sourceRef);
if (BitConverter.IsLittleEndian)
{
result = BinaryPrimitives.ReverseEndianness(result);
}
}
else
{
// We have between 1 and 3 bytes, so construct the relevant value directly
// since the data is in Big Endian format, we can just read the bytes and
// shift left by 8-bits for each subsequent part
for (int i = 0; i < source.Length; i++)
{
result <<= 8;
result |= Unsafe.Add(ref sourceRef, i);
}
}
}
value = result;
return true;
}
/// <inheritdoc cref="IBinaryInteger{TSelf}.TryReadLittleEndian(ReadOnlySpan{byte}, bool, out TSelf)" />
static bool IBinaryInteger<uint>.TryReadLittleEndian(ReadOnlySpan<byte> source, bool isUnsigned, out uint value)
{
uint result = default;
if (source.Length != 0)
{
if (!isUnsigned && sbyte.IsNegative((sbyte)source[^1]))
{
// When we are signed and the sign bit is set, we are negative and therefore
// definitely out of range
value = result;
return false;
}
if ((source.Length > sizeof(uint)) && (source[sizeof(uint)..].ContainsAnyExcept((byte)0x00)))
{
// When we have any non-zero leading data, we are a large positive and therefore
// definitely out of range
value = result;
return false;
}
ref byte sourceRef = ref MemoryMarshal.GetReference(source);
if (source.Length >= sizeof(uint))
{
// We have at least 4 bytes, so just read the ones we need directly
result = Unsafe.ReadUnaligned<uint>(ref sourceRef);
if (!BitConverter.IsLittleEndian)
{
result = BinaryPrimitives.ReverseEndianness(result);
}
}
else
{
// We have between 1 and 3 bytes, so construct the relevant value directly
// since the data is in Little Endian format, we can just read the bytes and
// shift left by 8-bits for each subsequent part, then reverse endianness to
// ensure the order is correct. This is more efficient than iterating in reverse
// due to current JIT limitations
for (int i = 0; i < source.Length; i++)
{
uint part = Unsafe.Add(ref sourceRef, i);
part <<= (i * 8);
result |= part;
}
}
}
value = result;
return true;
}
/// <inheritdoc cref="IBinaryInteger{TSelf}.GetShortestBitLength()" />
int IBinaryInteger<uint>.GetShortestBitLength() => (sizeof(uint) * 8) - BitOperations.LeadingZeroCount(m_value);
/// <inheritdoc cref="IBinaryInteger{TSelf}.GetByteCount()" />
int IBinaryInteger<uint>.GetByteCount() => sizeof(uint);
/// <inheritdoc cref="IBinaryInteger{TSelf}.TryWriteBigEndian(Span{byte}, out int)" />
bool IBinaryInteger<uint>.TryWriteBigEndian(Span<byte> destination, out int bytesWritten)
{
if (BinaryPrimitives.TryWriteUInt32BigEndian(destination, m_value))
{
bytesWritten = sizeof(uint);
return true;
}
bytesWritten = 0;
return false;
}
/// <inheritdoc cref="IBinaryInteger{TSelf}.TryWriteLittleEndian(Span{byte}, out int)" />
bool IBinaryInteger<uint>.TryWriteLittleEndian(Span<byte> destination, out int bytesWritten)
{
if (BinaryPrimitives.TryWriteUInt32LittleEndian(destination, m_value))
{
bytesWritten = sizeof(uint);
return true;
}
bytesWritten = 0;
return false;
}
//
// IBinaryNumber
//
/// <inheritdoc cref="IBinaryNumber{TSelf}.AllBitsSet" />
static uint IBinaryNumber<uint>.AllBitsSet => MaxValue;
/// <inheritdoc cref="IBinaryNumber{TSelf}.IsPow2(TSelf)" />
public static bool IsPow2(uint value) => BitOperations.IsPow2(value);
/// <inheritdoc cref="IBinaryNumber{TSelf}.Log2(TSelf)" />
[Intrinsic]
public static uint Log2(uint value) => (uint)BitOperations.Log2(value);
//
// IBitwiseOperators
//
/// <inheritdoc cref="IBitwiseOperators{TSelf, TOther, TResult}.op_BitwiseAnd(TSelf, TOther)" />
static uint IBitwiseOperators<uint, uint, uint>.operator &(uint left, uint right) => left & right;
/// <inheritdoc cref="IBitwiseOperators{TSelf, TOther, TResult}.op_BitwiseOr(TSelf, TOther)" />
static uint IBitwiseOperators<uint, uint, uint>.operator |(uint left, uint right) => left | right;
/// <inheritdoc cref="IBitwiseOperators{TSelf, TOther, TResult}.op_ExclusiveOr(TSelf, TOther)" />
static uint IBitwiseOperators<uint, uint, uint>.operator ^(uint left, uint right) => left ^ right;
/// <inheritdoc cref="IBitwiseOperators{TSelf, TOther, TResult}.op_OnesComplement(TSelf)" />
static uint IBitwiseOperators<uint, uint, uint>.operator ~(uint value) => ~value;
//
// IComparisonOperators
//
/// <inheritdoc cref="IComparisonOperators{TSelf, TOther, TResult}.op_LessThan(TSelf, TOther)" />
static bool IComparisonOperators<uint, uint, bool>.operator <(uint left, uint right) => left < right;
/// <inheritdoc cref="IComparisonOperators{TSelf, TOther, TResult}.op_LessThanOrEqual(TSelf, TOther)" />
static bool IComparisonOperators<uint, uint, bool>.operator <=(uint left, uint right) => left <= right;
/// <inheritdoc cref="IComparisonOperators{TSelf, TOther, TResult}.op_GreaterThan(TSelf, TOther)" />
static bool IComparisonOperators<uint, uint, bool>.operator >(uint left, uint right) => left > right;
/// <inheritdoc cref="IComparisonOperators{TSelf, TOther, TResult}.op_GreaterThanOrEqual(TSelf, TOther)" />
static bool IComparisonOperators<uint, uint, bool>.operator >=(uint left, uint right) => left >= right;
//
// IDecrementOperators
//
/// <inheritdoc cref="IDecrementOperators{TSelf}.op_Decrement(TSelf)" />
static uint IDecrementOperators<uint>.operator --(uint value) => --value;
/// <inheritdoc cref="IDecrementOperators{TSelf}.op_Decrement(TSelf)" />
static uint IDecrementOperators<uint>.operator checked --(uint value) => checked(--value);
//
// IDivisionOperators
//
/// <inheritdoc cref="IDivisionOperators{TSelf, TOther, TResult}.op_Division(TSelf, TOther)" />
static uint IDivisionOperators<uint, uint, uint>.operator /(uint left, uint right) => left / right;
//
// IEqualityOperators
//
/// <inheritdoc cref="IEqualityOperators{TSelf, TOther, TResult}.op_Equality(TSelf, TOther)" />
static bool IEqualityOperators<uint, uint, bool>.operator ==(uint left, uint right) => left == right;
/// <inheritdoc cref="IEqualityOperators{TSelf, TOther, TResult}.op_Inequality(TSelf, TOther)" />
static bool IEqualityOperators<uint, uint, bool>.operator !=(uint left, uint right) => left != right;
//
// IIncrementOperators
//
/// <inheritdoc cref="IIncrementOperators{TSelf}.op_Increment(TSelf)" />
static uint IIncrementOperators<uint>.operator ++(uint value) => ++value;
/// <inheritdoc cref="IIncrementOperators{TSelf}.op_CheckedIncrement(TSelf)" />
static uint IIncrementOperators<uint>.operator checked ++(uint value) => checked(++value);
//
// IMinMaxValue
//
/// <inheritdoc cref="IMinMaxValue{TSelf}.MinValue" />
static uint IMinMaxValue<uint>.MinValue => MinValue;
/// <inheritdoc cref="IMinMaxValue{TSelf}.MaxValue" />
static uint IMinMaxValue<uint>.MaxValue => MaxValue;
//
// IModulusOperators
//
/// <inheritdoc cref="IModulusOperators{TSelf, TOther, TResult}.op_Modulus(TSelf, TOther)" />
static uint IModulusOperators<uint, uint, uint>.operator %(uint left, uint right) => left % right;
//
// IMultiplicativeIdentity
//
/// <inheritdoc cref="IMultiplicativeIdentity{TSelf, TResult}.MultiplicativeIdentity" />
static uint IMultiplicativeIdentity<uint, uint>.MultiplicativeIdentity => MultiplicativeIdentity;
//
// IMultiplyOperators
//
/// <inheritdoc cref="IMultiplyOperators{TSelf, TOther, TResult}.op_Multiply(TSelf, TOther)" />
static uint IMultiplyOperators<uint, uint, uint>.operator *(uint left, uint right) => left * right;
/// <inheritdoc cref="IMultiplyOperators{TSelf, TOther, TResult}.op_CheckedMultiply(TSelf, TOther)" />
static uint IMultiplyOperators<uint, uint, uint>.operator checked *(uint left, uint right) => checked(left * right);
//
// INumber
//
/// <inheritdoc cref="INumber{TSelf}.Clamp(TSelf, TSelf, TSelf)" />
public static uint Clamp(uint value, uint min, uint max) => Math.Clamp(value, min, max);
/// <inheritdoc cref="INumber{TSelf}.CopySign(TSelf, TSelf)" />
static uint INumber<uint>.CopySign(uint value, uint sign) => value;
/// <inheritdoc cref="INumber{TSelf}.Max(TSelf, TSelf)" />
public static uint Max(uint x, uint y) => Math.Max(x, y);
/// <inheritdoc cref="INumber{TSelf}.MaxNumber(TSelf, TSelf)" />
static uint INumber<uint>.MaxNumber(uint x, uint y) => Max(x, y);
/// <inheritdoc cref="INumber{TSelf}.Min(TSelf, TSelf)" />
public static uint Min(uint x, uint y) => Math.Min(x, y);
/// <inheritdoc cref="INumber{TSelf}.MinNumber(TSelf, TSelf)" />
static uint INumber<uint>.MinNumber(uint x, uint y) => Min(x, y);
/// <inheritdoc cref="INumber{TSelf}.Sign(TSelf)" />
public static int Sign(uint value) => (value == 0) ? 0 : 1;
//
// INumberBase
//
/// <inheritdoc cref="INumberBase{TSelf}.One" />
static uint INumberBase<uint>.One => One;
/// <inheritdoc cref="INumberBase{TSelf}.Radix" />
static int INumberBase<uint>.Radix => 2;
/// <inheritdoc cref="INumberBase{TSelf}.Zero" />
static uint INumberBase<uint>.Zero => Zero;
/// <inheritdoc cref="INumberBase{TSelf}.Abs(TSelf)" />
static uint INumberBase<uint>.Abs(uint value) => value;
/// <inheritdoc cref="INumberBase{TSelf}.CreateChecked{TOther}(TOther)" />
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static uint CreateChecked<TOther>(TOther value)
where TOther : INumberBase<TOther>
{
uint result;
if (typeof(TOther) == typeof(uint))
{
result = (uint)(object)value;
}
else if (!TryConvertFromChecked(value, out result) && !TOther.TryConvertToChecked(value, out result))
{
ThrowHelper.ThrowNotSupportedException();
}
return result;
}
/// <inheritdoc cref="INumberBase{TSelf}.CreateSaturating{TOther}(TOther)" />
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static uint CreateSaturating<TOther>(TOther value)
where TOther : INumberBase<TOther>
{
uint result;
if (typeof(TOther) == typeof(uint))
{
result = (uint)(object)value;
}
else if (!TryConvertFromSaturating(value, out result) && !TOther.TryConvertToSaturating(value, out result))
{
ThrowHelper.ThrowNotSupportedException();
}
return result;
}
/// <inheritdoc cref="INumberBase{TSelf}.CreateTruncating{TOther}(TOther)" />
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static uint CreateTruncating<TOther>(TOther value)
where TOther : INumberBase<TOther>
{
uint result;
if (typeof(TOther) == typeof(uint))
{
result = (uint)(object)value;
}
else if (!TryConvertFromTruncating(value, out result) && !TOther.TryConvertToTruncating(value, out result))
{
ThrowHelper.ThrowNotSupportedException();
}
return result;
}
/// <inheritdoc cref="INumberBase{TSelf}.IsCanonical(TSelf)" />
static bool INumberBase<uint>.IsCanonical(uint value) => true;
/// <inheritdoc cref="INumberBase{TSelf}.IsComplexNumber(TSelf)" />
static bool INumberBase<uint>.IsComplexNumber(uint value) => false;
/// <inheritdoc cref="INumberBase{TSelf}.IsEvenInteger(TSelf)" />
public static bool IsEvenInteger(uint value) => (value & 1) == 0;
/// <inheritdoc cref="INumberBase{TSelf}.IsFinite(TSelf)" />
static bool INumberBase<uint>.IsFinite(uint value) => true;
/// <inheritdoc cref="INumberBase{TSelf}.IsImaginaryNumber(TSelf)" />
static bool INumberBase<uint>.IsImaginaryNumber(uint value) => false;
/// <inheritdoc cref="INumberBase{TSelf}.IsInfinity(TSelf)" />
static bool INumberBase<uint>.IsInfinity(uint value) => false;
/// <inheritdoc cref="INumberBase{TSelf}.IsInteger(TSelf)" />
static bool INumberBase<uint>.IsInteger(uint value) => true;
/// <inheritdoc cref="INumberBase{TSelf}.IsNaN(TSelf)" />
static bool INumberBase<uint>.IsNaN(uint value) => false;
/// <inheritdoc cref="INumberBase{TSelf}.IsNegative(TSelf)" />
static bool INumberBase<uint>.IsNegative(uint value) => false;
/// <inheritdoc cref="INumberBase{TSelf}.IsNegativeInfinity(TSelf)" />
static bool INumberBase<uint>.IsNegativeInfinity(uint value) => false;
/// <inheritdoc cref="INumberBase{TSelf}.IsNormal(TSelf)" />
static bool INumberBase<uint>.IsNormal(uint value) => value != 0;
/// <inheritdoc cref="INumberBase{TSelf}.IsOddInteger(TSelf)" />
public static bool IsOddInteger(uint value) => (value & 1) != 0;
/// <inheritdoc cref="INumberBase{TSelf}.IsPositive(TSelf)" />
static bool INumberBase<uint>.IsPositive(uint value) => true;
/// <inheritdoc cref="INumberBase{TSelf}.IsPositiveInfinity(TSelf)" />
static bool INumberBase<uint>.IsPositiveInfinity(uint value) => false;
/// <inheritdoc cref="INumberBase{TSelf}.IsRealNumber(TSelf)" />
static bool INumberBase<uint>.IsRealNumber(uint value) => true;
/// <inheritdoc cref="INumberBase{TSelf}.IsSubnormal(TSelf)" />
static bool INumberBase<uint>.IsSubnormal(uint value) => false;
/// <inheritdoc cref="INumberBase{TSelf}.IsZero(TSelf)" />
static bool INumberBase<uint>.IsZero(uint value) => (value == 0);
/// <inheritdoc cref="INumberBase{TSelf}.MaxMagnitude(TSelf, TSelf)" />
static uint INumberBase<uint>.MaxMagnitude(uint x, uint y) => Max(x, y);
/// <inheritdoc cref="INumberBase{TSelf}.MaxMagnitudeNumber(TSelf, TSelf)" />
static uint INumberBase<uint>.MaxMagnitudeNumber(uint x, uint y) => Max(x, y);
/// <inheritdoc cref="INumberBase{TSelf}.MinMagnitude(TSelf, TSelf)" />
static uint INumberBase<uint>.MinMagnitude(uint x, uint y) => Min(x, y);
/// <inheritdoc cref="INumberBase{TSelf}.MinMagnitudeNumber(TSelf, TSelf)" />
static uint INumberBase<uint>.MinMagnitudeNumber(uint x, uint y) => Min(x, y);
/// <inheritdoc cref="INumberBase{TSelf}.MultiplyAddEstimate(TSelf, TSelf, TSelf)" />
static uint INumberBase<uint>.MultiplyAddEstimate(uint left, uint right, uint addend) => (left * right) + addend;
/// <inheritdoc cref="INumberBase{TSelf}.TryConvertFromChecked{TOther}(TOther, out TSelf)" />
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static bool INumberBase<uint>.TryConvertFromChecked<TOther>(TOther value, out uint result) => TryConvertFromChecked(value, out result);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool TryConvertFromChecked<TOther>(TOther value, out uint result)
where TOther : INumberBase<TOther>
{
// In order to reduce overall code duplication and improve the inlinabilty of these
// methods for the corelib types we have `ConvertFrom` handle the same sign and
// `ConvertTo` handle the opposite sign. However, since there is an uneven split
// between signed and unsigned types, the one that handles unsigned will also
// handle `Decimal`.
//
// That is, `ConvertFrom` for `uint` will handle the other unsigned types and
// `ConvertTo` will handle the signed types
if (typeof(TOther) == typeof(byte))
{
byte actualValue = (byte)(object)value;
result = actualValue;
return true;
}
else if (typeof(TOther) == typeof(char))
{
char actualValue = (char)(object)value;
result = actualValue;
return true;
}
else if (typeof(TOther) == typeof(decimal))
{
decimal actualValue = (decimal)(object)value;
result = checked((uint)actualValue);
return true;
}
else if (typeof(TOther) == typeof(ushort))
{
ushort actualValue = (ushort)(object)value;
result = actualValue;
return true;
}
else if (typeof(TOther) == typeof(ulong))
{
ulong actualValue = (ulong)(object)value;
result = checked((uint)actualValue);
return true;
}
else if (typeof(TOther) == typeof(UInt128))
{
UInt128 actualValue = (UInt128)(object)value;
result = checked((uint)actualValue);
return true;
}
else if (typeof(TOther) == typeof(nuint))
{
nuint actualValue = (nuint)(object)value;
result = checked((uint)actualValue);
return true;
}
else
{
result = default;
return false;
}
}
/// <inheritdoc cref="INumberBase{TSelf}.TryConvertFromSaturating{TOther}(TOther, out TSelf)" />
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static bool INumberBase<uint>.TryConvertFromSaturating<TOther>(TOther value, out uint result) => TryConvertFromSaturating(value, out result);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool TryConvertFromSaturating<TOther>(TOther value, out uint result)
where TOther : INumberBase<TOther>
{
// In order to reduce overall code duplication and improve the inlinabilty of these
// methods for the corelib types we have `ConvertFrom` handle the same sign and
// `ConvertTo` handle the opposite sign. However, since there is an uneven split
// between signed and unsigned types, the one that handles unsigned will also
// handle `Decimal`.
//
// That is, `ConvertFrom` for `uint` will handle the other unsigned types and
// `ConvertTo` will handle the signed types
if (typeof(TOther) == typeof(byte))
{
byte actualValue = (byte)(object)value;
result = actualValue;
return true;
}
else if (typeof(TOther) == typeof(char))
{
char actualValue = (char)(object)value;
result = actualValue;
return true;
}
else if (typeof(TOther) == typeof(decimal))
{
decimal actualValue = (decimal)(object)value;
result = (actualValue >= MaxValue) ? MaxValue :
(actualValue <= MinValue) ? MinValue : (uint)actualValue;
return true;
}
else if (typeof(TOther) == typeof(ushort))
{
ushort actualValue = (ushort)(object)value;
result = actualValue;
return true;
}
else if (typeof(TOther) == typeof(ulong))
{
ulong actualValue = (ulong)(object)value;
result = (actualValue >= MaxValue) ? MaxValue : (uint)actualValue;
return true;
}
else if (typeof(TOther) == typeof(UInt128))
{
UInt128 actualValue = (UInt128)(object)value;
result = (actualValue >= MaxValue) ? MaxValue : (uint)actualValue;
return true;
}
else if (typeof(TOther) == typeof(nuint))
{
nuint actualValue = (nuint)(object)value;
result = (actualValue >= MaxValue) ? MaxValue : (uint)actualValue;
return true;
}
else
{
result = default;
return false;
}
}
/// <inheritdoc cref="INumberBase{TSelf}.TryConvertFromTruncating{TOther}(TOther, out TSelf)" />
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static bool INumberBase<uint>.TryConvertFromTruncating<TOther>(TOther value, out uint result) => TryConvertFromTruncating(value, out result);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool TryConvertFromTruncating<TOther>(TOther value, out uint result)
where TOther : INumberBase<TOther>
{
// In order to reduce overall code duplication and improve the inlinabilty of these
// methods for the corelib types we have `ConvertFrom` handle the same sign and
// `ConvertTo` handle the opposite sign. However, since there is an uneven split
// between signed and unsigned types, the one that handles unsigned will also
// handle `Decimal`.
//
// That is, `ConvertFrom` for `uint` will handle the other unsigned types and
// `ConvertTo` will handle the signed types
if (typeof(TOther) == typeof(byte))
{
byte actualValue = (byte)(object)value;
result = actualValue;
return true;
}
else if (typeof(TOther) == typeof(char))
{
char actualValue = (char)(object)value;
result = actualValue;
return true;
}
else if (typeof(TOther) == typeof(decimal))
{
decimal actualValue = (decimal)(object)value;
result = (actualValue >= MaxValue) ? MaxValue :
(actualValue <= MinValue) ? MinValue : (uint)actualValue;
return true;
}
else if (typeof(TOther) == typeof(ushort))
{
ushort actualValue = (ushort)(object)value;
result = actualValue;
return true;
}
else if (typeof(TOther) == typeof(ulong))
{
ulong actualValue = (ulong)(object)value;
result = (uint)actualValue;
return true;
}
else if (typeof(TOther) == typeof(UInt128))
{
UInt128 actualValue = (UInt128)(object)value;
result = (uint)actualValue;
return true;
}
else if (typeof(TOther) == typeof(nuint))
{
nuint actualValue = (nuint)(object)value;
result = (uint)actualValue;
return true;
}
else
{
result = default;
return false;
}
}
/// <inheritdoc cref="INumberBase{TSelf}.TryConvertToChecked{TOther}(TSelf, out TOther)" />
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static bool INumberBase<uint>.TryConvertToChecked<TOther>(uint value, [MaybeNullWhen(false)] out TOther result)
{
// In order to reduce overall code duplication and improve the inlinabilty of these
// methods for the corelib types we have `ConvertFrom` handle the same sign and
// `ConvertTo` handle the opposite sign. However, since there is an uneven split
// between signed and unsigned types, the one that handles unsigned will also
// handle `Decimal`.
//
// That is, `ConvertFrom` for `uint` will handle the other unsigned types and
// `ConvertTo` will handle the signed types
if (typeof(TOther) == typeof(double))
{
double actualResult = value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(Half))
{
Half actualResult = (Half)value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(short))
{
short actualResult = checked((short)value);
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(int))
{
int actualResult = checked((int)value);
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(long))
{
long actualResult = value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(Int128))
{
Int128 actualResult = value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(nint))
{
nint actualResult = checked((nint)value);
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(sbyte))
{
sbyte actualResult = checked((sbyte)value);
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(float))
{
float actualResult = value;
result = (TOther)(object)actualResult;
return true;
}
else
{
result = default;
return false;
}
}
/// <inheritdoc cref="INumberBase{TSelf}.TryConvertToSaturating{TOther}(TSelf, out TOther)" />
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static bool INumberBase<uint>.TryConvertToSaturating<TOther>(uint value, [MaybeNullWhen(false)] out TOther result)
{
// In order to reduce overall code duplication and improve the inlinabilty of these
// methods for the corelib types we have `ConvertFrom` handle the same sign and
// `ConvertTo` handle the opposite sign. However, since there is an uneven split
// between signed and unsigned types, the one that handles unsigned will also
// handle `Decimal`.
//
// That is, `ConvertFrom` for `uint` will handle the other unsigned types and
// `ConvertTo` will handle the signed types
if (typeof(TOther) == typeof(double))
{
double actualResult = value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(Half))
{
Half actualResult = (Half)value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(short))
{
short actualResult = (value >= (uint)short.MaxValue) ? short.MaxValue : (short)value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(int))
{
int actualResult = (value >= int.MaxValue) ? int.MaxValue : (int)value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(long))
{
long actualResult = value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(Int128))
{
Int128 actualResult = value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(nint))
{
#if TARGET_32BIT
nint actualResult = (value >= int.MaxValue) ? int.MaxValue : (nint)value;
result = (TOther)(object)actualResult;
return true;
#else
nint actualResult = (nint)value;
result = (TOther)(object)actualResult;
return true;
#endif
}
else if (typeof(TOther) == typeof(sbyte))
{
sbyte actualResult = (value >= (uint)sbyte.MaxValue) ? sbyte.MaxValue : (sbyte)value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(float))
{
float actualResult = value;
result = (TOther)(object)actualResult;
return true;
}
else
{
result = default;
return false;
}
}
/// <inheritdoc cref="INumberBase{TSelf}.TryConvertToTruncating{TOther}(TSelf, out TOther)" />
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static bool INumberBase<uint>.TryConvertToTruncating<TOther>(uint value, [MaybeNullWhen(false)] out TOther result)
{
// In order to reduce overall code duplication and improve the inlinabilty of these
// methods for the corelib types we have `ConvertFrom` handle the same sign and
// `ConvertTo` handle the opposite sign. However, since there is an uneven split
// between signed and unsigned types, the one that handles unsigned will also
// handle `Decimal`.
//
// That is, `ConvertFrom` for `uint` will handle the other unsigned types and
// `ConvertTo` will handle the signed types
if (typeof(TOther) == typeof(double))
{
double actualResult = value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(Half))
{
Half actualResult = (Half)value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(short))
{
short actualResult = (short)value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(int))
{
int actualResult = (int)value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(long))
{
long actualResult = value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(Int128))
{
Int128 actualResult = value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(nint))
{
nint actualResult = (nint)value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(sbyte))
{
sbyte actualResult = (sbyte)value;
result = (TOther)(object)actualResult;
return true;
}
else if (typeof(TOther) == typeof(float))
{
float actualResult = value;
result = (TOther)(object)actualResult;
return true;
}
else
{
result = default;
return false;
}
}
//
// IParsable
//
/// <inheritdoc cref="IParsable{TSelf}.TryParse(string?, IFormatProvider?, out TSelf)" />
public static bool TryParse([NotNullWhen(true)] string? s, IFormatProvider? provider, out uint result) => TryParse(s, NumberStyles.Integer, provider, out result);
//
// IShiftOperators
//
/// <inheritdoc cref="IShiftOperators{TSelf, TOther, TResult}.op_LeftShift(TSelf, TOther)" />
static uint IShiftOperators<uint, int, uint>.operator <<(uint value, int shiftAmount) => value << shiftAmount;
/// <inheritdoc cref="IShiftOperators{TSelf, TOther, TResult}.op_RightShift(TSelf, TOther)" />
static uint IShiftOperators<uint, int, uint>.operator >>(uint value, int shiftAmount) => value >> shiftAmount;
/// <inheritdoc cref="IShiftOperators{TSelf, TOther, TResult}.op_UnsignedRightShift(TSelf, TOther)" />
static uint IShiftOperators<uint, int, uint>.operator >>>(uint value, int shiftAmount) => value >>> shiftAmount;
//
// ISpanParsable
//
/// <inheritdoc cref="ISpanParsable{TSelf}.Parse(ReadOnlySpan{char}, IFormatProvider?)" />
public static uint Parse(ReadOnlySpan<char> s, IFormatProvider? provider) => Parse(s, NumberStyles.Integer, provider);
/// <inheritdoc cref="ISpanParsable{TSelf}.TryParse(ReadOnlySpan{char}, IFormatProvider?, out TSelf)" />
public static bool TryParse(ReadOnlySpan<char> s, IFormatProvider? provider, out uint result) => TryParse(s, NumberStyles.Integer, provider, out result);
//
// ISubtractionOperators
//
/// <inheritdoc cref="ISubtractionOperators{TSelf, TOther, TResult}.op_Subtraction(TSelf, TOther)" />
static uint ISubtractionOperators<uint, uint, uint>.operator -(uint left, uint right) => left - right;
/// <inheritdoc cref="ISubtractionOperators{TSelf, TOther, TResult}.op_CheckedSubtraction(TSelf, TOther)" />
static uint ISubtractionOperators<uint, uint, uint>.operator checked -(uint left, uint right) => checked(left - right);
//
// IUnaryNegationOperators
//
/// <inheritdoc cref="IUnaryNegationOperators{TSelf, TResult}.op_UnaryNegation(TSelf)" />
static uint IUnaryNegationOperators<uint, uint>.operator -(uint value) => 0u - value;
/// <inheritdoc cref="IUnaryNegationOperators{TSelf, TResult}.op_CheckedUnaryNegation(TSelf)" />
static uint IUnaryNegationOperators<uint, uint>.operator checked -(uint value) => checked(0u - value);
//
// IUnaryPlusOperators
//
/// <inheritdoc cref="IUnaryPlusOperators{TSelf, TResult}.op_UnaryPlus(TSelf)" />
static uint IUnaryPlusOperators<uint, uint>.operator +(uint value) => +value;
//
// IUtf8SpanParsable
//
/// <inheritdoc cref="INumberBase{TSelf}.Parse(ReadOnlySpan{byte}, NumberStyles, IFormatProvider?)" />
public static uint Parse(ReadOnlySpan<byte> utf8Text, NumberStyles style = NumberStyles.Integer, IFormatProvider? provider = null)
{
NumberFormatInfo.ValidateParseStyleInteger(style);
return Number.ParseBinaryInteger<byte, uint>(utf8Text, style, NumberFormatInfo.GetInstance(provider));
}
/// <inheritdoc cref="INumberBase{TSelf}.TryParse(ReadOnlySpan{byte}, NumberStyles, IFormatProvider?, out TSelf)" />
public static bool TryParse(ReadOnlySpan<byte> utf8Text, NumberStyles style, IFormatProvider? provider, out uint result)
{
NumberFormatInfo.ValidateParseStyleInteger(style);
return Number.TryParseBinaryInteger(utf8Text, style, NumberFormatInfo.GetInstance(provider), out result) == Number.ParsingStatus.OK;
}
/// <inheritdoc cref="IUtf8SpanParsable{TSelf}.Parse(ReadOnlySpan{byte}, IFormatProvider?)" />
public static uint Parse(ReadOnlySpan<byte> utf8Text, IFormatProvider? provider) => Parse(utf8Text, NumberStyles.Integer, provider);
/// <inheritdoc cref="IUtf8SpanParsable{TSelf}.TryParse(ReadOnlySpan{byte}, IFormatProvider?, out TSelf)" />
public static bool TryParse(ReadOnlySpan<byte> utf8Text, IFormatProvider? provider, out uint result) => TryParse(utf8Text, NumberStyles.Integer, provider, out result);
//
// IBinaryIntegerParseAndFormatInfo
//
static bool IBinaryIntegerParseAndFormatInfo<uint>.IsSigned => false;
static int IBinaryIntegerParseAndFormatInfo<uint>.MaxDigitCount => 10; // 4_294_967_295
static int IBinaryIntegerParseAndFormatInfo<uint>.MaxHexDigitCount => 8; // 0xFFFF_FFFF
static uint IBinaryIntegerParseAndFormatInfo<uint>.MaxValueDiv10 => MaxValue / 10;
static string IBinaryIntegerParseAndFormatInfo<uint>.OverflowMessage => SR.Overflow_UInt32;
static bool IBinaryIntegerParseAndFormatInfo<uint>.IsGreaterThanAsUnsigned(uint left, uint right) => left > right;
static uint IBinaryIntegerParseAndFormatInfo<uint>.MultiplyBy10(uint value) => value * 10;
static uint IBinaryIntegerParseAndFormatInfo<uint>.MultiplyBy16(uint value) => value * 16;
}
}
|