File: src\libraries\System.Private.CoreLib\src\System\Byte.cs
Web Access
Project: src\src\coreclr\System.Private.CoreLib\System.Private.CoreLib.csproj (System.Private.CoreLib)
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
 
using System.Diagnostics.CodeAnalysis;
using System.Globalization;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Runtime.Versioning;
 
namespace System
{
    [Serializable]
    [StructLayout(LayoutKind.Sequential)]
    [TypeForwardedFrom("mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089")]
    public readonly struct Byte
        : IComparable,
          IConvertible,
          ISpanFormattable,
          IComparable<byte>,
          IEquatable<byte>,
          IBinaryInteger<byte>,
          IMinMaxValue<byte>,
          IUnsignedNumber<byte>,
          IUtf8SpanFormattable,
          IUtfChar<byte>,
          IBinaryIntegerParseAndFormatInfo<byte>
    {
        private readonly byte m_value; // Do not rename (binary serialization)
 
        // The maximum value that a Byte may represent: 255.
        public const byte MaxValue = (byte)0xFF;
 
        // The minimum value that a Byte may represent: 0.
        public const byte MinValue = 0;
 
        /// <summary>Represents the additive identity (0).</summary>
        private const byte AdditiveIdentity = 0;
 
        /// <summary>Represents the multiplicative identity (1).</summary>
        private const byte MultiplicativeIdentity = 1;
 
        /// <summary>Represents the number one (1).</summary>
        private const byte One = 1;
 
        /// <summary>Represents the number zero (0).</summary>
        private const byte Zero = 0;
 
        // Compares this object to another object, returning an integer that
        // indicates the relationship.
        // Returns a value less than zero if this  object
        // null is considered to be less than any instance.
        // If object is not of type byte, this method throws an ArgumentException.
        //
        public int CompareTo(object? value)
        {
            if (value == null)
            {
                return 1;
            }
            if (!(value is byte))
            {
                throw new ArgumentException(SR.Arg_MustBeByte);
            }
 
            return m_value - (((byte)value).m_value);
        }
 
        public int CompareTo(byte value)
        {
            return m_value - value;
        }
 
        // Determines whether two Byte objects are equal.
        public override bool Equals([NotNullWhen(true)] object? obj)
        {
            if (!(obj is byte))
            {
                return false;
            }
            return m_value == ((byte)obj).m_value;
        }
 
        [NonVersionable]
        public bool Equals(byte obj)
        {
            return m_value == obj;
        }
 
        // Gets a hash code for this instance.
        public override int GetHashCode()
        {
            return m_value;
        }
 
        public static byte Parse(string s) => Parse(s, NumberStyles.Integer, provider: null);
 
        public static byte Parse(string s, NumberStyles style) => Parse(s, style, provider: null);
 
        public static byte Parse(string s, IFormatProvider? provider) => Parse(s, NumberStyles.Integer, provider);
 
        public static byte Parse(string s, NumberStyles style, IFormatProvider? provider)
        {
            if (s is null) { ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); }
            return Parse(s.AsSpan(), style, provider);
        }
 
        public static byte Parse(ReadOnlySpan<char> s, NumberStyles style = NumberStyles.Integer, IFormatProvider? provider = null)
        {
            NumberFormatInfo.ValidateParseStyleInteger(style);
            return Number.ParseBinaryInteger<char, byte>(s, style, NumberFormatInfo.GetInstance(provider));
        }
 
        public static bool TryParse([NotNullWhen(true)] string? s, out byte result) => TryParse(s, NumberStyles.Integer, provider: null, out result);
 
        public static bool TryParse(ReadOnlySpan<char> s, out byte result) => TryParse(s, NumberStyles.Integer, provider: null, out result);
 
        /// <summary>Tries to convert a UTF-8 character span containing the string representation of a number to its 8-bit unsigned integer equivalent.</summary>
        /// <param name="utf8Text">A span containing the UTF-8 characters representing the number to convert.</param>
        /// <param name="result">When this method returns, contains the 8-bit unsigned integer value equivalent to the number contained in <paramref name="utf8Text" /> if the conversion succeeded, or zero if the conversion failed. This parameter is passed uninitialized; any value originally supplied in result will be overwritten.</param>
        /// <returns><c>true</c> if <paramref name="utf8Text" /> was converted successfully; otherwise, false.</returns>
        public static bool TryParse(ReadOnlySpan<byte> utf8Text, out byte result) => TryParse(utf8Text, NumberStyles.Integer, provider: null, out result);
 
        public static bool TryParse([NotNullWhen(true)] string? s, NumberStyles style, IFormatProvider? provider, out byte result)
        {
            NumberFormatInfo.ValidateParseStyleInteger(style);
 
            if (s is null)
            {
                result = 0;
                return false;
            }
            return Number.TryParseBinaryInteger(s.AsSpan(), style, NumberFormatInfo.GetInstance(provider), out result) == Number.ParsingStatus.OK;
        }
 
        public static bool TryParse(ReadOnlySpan<char> s, NumberStyles style, IFormatProvider? provider, out byte result)
        {
            NumberFormatInfo.ValidateParseStyleInteger(style);
            return Number.TryParseBinaryInteger(s, style, NumberFormatInfo.GetInstance(provider), out result) == Number.ParsingStatus.OK;
        }
 
        public override string ToString()
        {
            return Number.UInt32ToDecStr(m_value);
        }
 
        public string ToString([StringSyntax(StringSyntaxAttribute.NumericFormat)] string? format)
        {
            return Number.FormatUInt32(m_value, format, null);
        }
 
        public string ToString(IFormatProvider? provider)
        {
            return Number.UInt32ToDecStr(m_value);
        }
 
        public string ToString([StringSyntax(StringSyntaxAttribute.NumericFormat)] string? format, IFormatProvider? provider)
        {
            return Number.FormatUInt32(m_value, format, provider);
        }
 
        public bool TryFormat(Span<char> destination, out int charsWritten, [StringSyntax(StringSyntaxAttribute.NumericFormat)] ReadOnlySpan<char> format = default, IFormatProvider? provider = null)
        {
            return Number.TryFormatUInt32(m_value, format, provider, destination, out charsWritten);
        }
 
        /// <inheritdoc cref="IUtf8SpanFormattable.TryFormat" />
        public bool TryFormat(Span<byte> utf8Destination, out int bytesWritten, [StringSyntax(StringSyntaxAttribute.NumericFormat)] ReadOnlySpan<char> format = default, IFormatProvider? provider = null)
        {
            return Number.TryFormatUInt32(m_value, format, provider, utf8Destination, out bytesWritten);
        }
 
        //
        // IConvertible
        //
 
        public TypeCode GetTypeCode()
        {
            return TypeCode.Byte;
        }
 
        bool IConvertible.ToBoolean(IFormatProvider? provider)
        {
            return Convert.ToBoolean(m_value);
        }
 
        char IConvertible.ToChar(IFormatProvider? provider)
        {
            return Convert.ToChar(m_value);
        }
 
        sbyte IConvertible.ToSByte(IFormatProvider? provider)
        {
            return Convert.ToSByte(m_value);
        }
 
        byte IConvertible.ToByte(IFormatProvider? provider)
        {
            return m_value;
        }
 
        short IConvertible.ToInt16(IFormatProvider? provider)
        {
            return Convert.ToInt16(m_value);
        }
 
        ushort IConvertible.ToUInt16(IFormatProvider? provider)
        {
            return Convert.ToUInt16(m_value);
        }
 
        int IConvertible.ToInt32(IFormatProvider? provider)
        {
            return Convert.ToInt32(m_value);
        }
 
        uint IConvertible.ToUInt32(IFormatProvider? provider)
        {
            return Convert.ToUInt32(m_value);
        }
 
        long IConvertible.ToInt64(IFormatProvider? provider)
        {
            return Convert.ToInt64(m_value);
        }
 
        ulong IConvertible.ToUInt64(IFormatProvider? provider)
        {
            return Convert.ToUInt64(m_value);
        }
 
        float IConvertible.ToSingle(IFormatProvider? provider)
        {
            return Convert.ToSingle(m_value);
        }
 
        double IConvertible.ToDouble(IFormatProvider? provider)
        {
            return Convert.ToDouble(m_value);
        }
 
        decimal IConvertible.ToDecimal(IFormatProvider? provider)
        {
            return Convert.ToDecimal(m_value);
        }
 
        DateTime IConvertible.ToDateTime(IFormatProvider? provider)
        {
            throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "Byte", "DateTime"));
        }
 
        object IConvertible.ToType(Type type, IFormatProvider? provider)
        {
            return Convert.DefaultToType((IConvertible)this, type, provider);
        }
 
        //
        // IAdditionOperators
        //
 
        /// <inheritdoc cref="IAdditionOperators{TSelf, TOther, TResult}.op_Addition(TSelf, TOther)" />
        static byte IAdditionOperators<byte, byte, byte>.operator +(byte left, byte right) => (byte)(left + right);
 
        /// <inheritdoc cref="IAdditionOperators{TSelf, TOther, TResult}.op_CheckedAddition(TSelf, TOther)" />
        static byte IAdditionOperators<byte, byte, byte>.operator checked +(byte left, byte right) => checked((byte)(left + right));
 
        //
        // IAdditiveIdentity
        //
 
        /// <inheritdoc cref="IAdditiveIdentity{TSelf, TResult}.AdditiveIdentity" />
        static byte IAdditiveIdentity<byte, byte>.AdditiveIdentity => AdditiveIdentity;
 
        //
        // IBinaryInteger
        //
 
        /// <inheritdoc cref="IBinaryInteger{TSelf}.DivRem(TSelf, TSelf)" />
        public static (byte Quotient, byte Remainder) DivRem(byte left, byte right) => Math.DivRem(left, right);
 
        /// <inheritdoc cref="IBinaryInteger{TSelf}.LeadingZeroCount(TSelf)" />
        public static byte LeadingZeroCount(byte value) => (byte)(BitOperations.LeadingZeroCount(value) - 24);
 
        /// <inheritdoc cref="IBinaryInteger{TSelf}.PopCount(TSelf)" />
        public static byte PopCount(byte value) => (byte)BitOperations.PopCount(value);
 
        /// <inheritdoc cref="IBinaryInteger{TSelf}.RotateLeft(TSelf, int)" />
        public static byte RotateLeft(byte value, int rotateAmount) => (byte)((value << (rotateAmount & 7)) | (value >> ((8 - rotateAmount) & 7)));
 
        /// <inheritdoc cref="IBinaryInteger{TSelf}.RotateRight(TSelf, int)" />
        public static byte RotateRight(byte value, int rotateAmount) => (byte)((value >> (rotateAmount & 7)) | (value << ((8 - rotateAmount) & 7)));
 
        /// <inheritdoc cref="IBinaryInteger{TSelf}.TrailingZeroCount(TSelf)" />
        public static byte TrailingZeroCount(byte value) => (byte)(BitOperations.TrailingZeroCount(value << 24) - 24);
 
        /// <inheritdoc cref="IBinaryInteger{TSelf}.TryReadBigEndian(ReadOnlySpan{byte}, bool, out TSelf)" />
        static bool IBinaryInteger<byte>.TryReadBigEndian(ReadOnlySpan<byte> source, bool isUnsigned, out byte value)
        {
            byte result = default;
 
            if (source.Length != 0)
            {
                if (!isUnsigned && sbyte.IsNegative((sbyte)source[0]))
                {
                    // When we are signed and the sign bit is set we are negative and therefore
                    // definitely out of range
 
                    value = result;
                    return false;
                }
 
                if ((source.Length > sizeof(byte)) && (source[..^sizeof(byte)].ContainsAnyExcept((byte)0x00)))
                {
                    // When we have any non-zero leading data, we are a large positive and therefore
                    // definitely out of range
 
                    value = result;
                    return false;
                }
 
                // We only have 1-byte so read it directly
                result = Unsafe.Add(ref MemoryMarshal.GetReference(source), source.Length - sizeof(byte));
            }
 
            value = result;
            return true;
        }
 
        /// <inheritdoc cref="IBinaryInteger{TSelf}.TryReadLittleEndian(ReadOnlySpan{byte}, bool, out TSelf)" />
        static bool IBinaryInteger<byte>.TryReadLittleEndian(ReadOnlySpan<byte> source, bool isUnsigned, out byte value)
        {
            byte result = default;
 
            if (source.Length != 0)
            {
                if (!isUnsigned && sbyte.IsNegative((sbyte)source[^1]))
                {
                    // When we are signed and the sign bit is set, we are negative and therefore
                    // definitely out of range
 
                    value = result;
                    return false;
                }
 
                if ((source.Length > sizeof(byte)) && (source[sizeof(byte)..].ContainsAnyExcept((byte)0x00)))
                {
                    // When we have any non-zero leading data, we are a large positive and therefore
                    // definitely out of range
 
                    value = result;
                    return false;
                }
 
                // We only have 1-byte so read it directly
                result = MemoryMarshal.GetReference(source);
            }
 
            value = result;
            return true;
        }
 
        /// <inheritdoc cref="IBinaryInteger{TSelf}.GetShortestBitLength()" />
        int IBinaryInteger<byte>.GetShortestBitLength() => (sizeof(byte) * 8) - LeadingZeroCount(m_value);
 
        /// <inheritdoc cref="IBinaryInteger{TSelf}.GetByteCount()" />
        int IBinaryInteger<byte>.GetByteCount() => sizeof(byte);
 
        /// <inheritdoc cref="IBinaryInteger{TSelf}.TryWriteBigEndian(Span{byte}, out int)" />
        bool IBinaryInteger<byte>.TryWriteBigEndian(Span<byte> destination, out int bytesWritten)
        {
            if (destination.Length >= sizeof(byte))
            {
                byte value = m_value;
                MemoryMarshal.GetReference(destination) = value;
 
                bytesWritten = sizeof(byte);
                return true;
            }
            else
            {
                bytesWritten = 0;
                return false;
            }
        }
 
        /// <inheritdoc cref="IBinaryInteger{TSelf}.TryWriteLittleEndian(Span{byte}, out int)" />
        bool IBinaryInteger<byte>.TryWriteLittleEndian(Span<byte> destination, out int bytesWritten)
        {
            if (destination.Length >= sizeof(byte))
            {
                byte value = m_value;
                MemoryMarshal.GetReference(destination) = value;
 
                bytesWritten = sizeof(byte);
                return true;
            }
            else
            {
                bytesWritten = 0;
                return false;
            }
        }
 
        //
        // IBinaryNumber
        //
 
        /// <inheritdoc cref="IBinaryNumber{TSelf}.AllBitsSet" />
        static byte IBinaryNumber<byte>.AllBitsSet => MaxValue;
 
        /// <inheritdoc cref="IBinaryNumber{TSelf}.IsPow2(TSelf)" />
        public static bool IsPow2(byte value) => BitOperations.IsPow2((uint)value);
 
        /// <inheritdoc cref="IBinaryNumber{TSelf}.Log2(TSelf)" />
        public static byte Log2(byte value) => (byte)BitOperations.Log2(value);
 
        //
        // IBitwiseOperators
        //
 
        /// <inheritdoc cref="IBitwiseOperators{TSelf, TOther, TResult}.op_BitwiseAnd(TSelf, TOther)" />
        static byte IBitwiseOperators<byte, byte, byte>.operator &(byte left, byte right) => (byte)(left & right);
 
        /// <inheritdoc cref="IBitwiseOperators{TSelf, TOther, TResult}.op_BitwiseOr(TSelf, TOther)" />
        static byte IBitwiseOperators<byte, byte, byte>.operator |(byte left, byte right) => (byte)(left | right);
 
        /// <inheritdoc cref="IBitwiseOperators{TSelf, TOther, TResult}.op_ExclusiveOr(TSelf, TOther)" />
        static byte IBitwiseOperators<byte, byte, byte>.operator ^(byte left, byte right) => (byte)(left ^ right);
 
        /// <inheritdoc cref="IBitwiseOperators{TSelf, TOther, TResult}.op_OnesComplement(TSelf)" />
        static byte IBitwiseOperators<byte, byte, byte>.operator ~(byte value) => (byte)(~value);
 
        //
        // IComparisonOperators
        //
 
        /// <inheritdoc cref="IComparisonOperators{TSelf, TOther, TResult}.op_LessThan(TSelf, TOther)" />
        static bool IComparisonOperators<byte, byte, bool>.operator <(byte left, byte right) => left < right;
 
        /// <inheritdoc cref="IComparisonOperators{TSelf, TOther, TResult}.op_LessThanOrEqual(TSelf, TOther)" />
        static bool IComparisonOperators<byte, byte, bool>.operator <=(byte left, byte right) => left <= right;
 
        /// <inheritdoc cref="IComparisonOperators{TSelf, TOther, TResult}.op_GreaterThan(TSelf, TOther)" />
        static bool IComparisonOperators<byte, byte, bool>.operator >(byte left, byte right) => left > right;
 
        /// <inheritdoc cref="IComparisonOperators{TSelf, TOther, TResult}.op_GreaterThanOrEqual(TSelf, TOther)" />
        static bool IComparisonOperators<byte, byte, bool>.operator >=(byte left, byte right) => left >= right;
 
        //
        // IDecrementOperators
        //
 
        /// <inheritdoc cref="IDecrementOperators{TSelf}.op_Decrement(TSelf)" />
        static byte IDecrementOperators<byte>.operator --(byte value) => --value;
 
        /// <inheritdoc cref="IDecrementOperators{TSelf}.op_CheckedDecrement(TSelf)" />
        static byte IDecrementOperators<byte>.operator checked --(byte value) => checked(--value);
 
        //
        // IDivisionOperators
        //
 
        /// <inheritdoc cref="IDivisionOperators{TSelf, TOther, TResult}.op_Division(TSelf, TOther)" />
        static byte IDivisionOperators<byte, byte, byte>.operator /(byte left, byte right) => (byte)(left / right);
 
        //
        // IEqualityOperators
        //
 
        /// <inheritdoc cref="IEqualityOperators{TSelf, TOther, TResult}.op_Equality(TSelf, TOther)" />
        static bool IEqualityOperators<byte, byte, bool>.operator ==(byte left, byte right) => left == right;
 
        /// <inheritdoc cref="IEqualityOperators{TSelf, TOther, TResult}.op_Inequality(TSelf, TOther)" />
        static bool IEqualityOperators<byte, byte, bool>.operator !=(byte left, byte right) => left != right;
 
        //
        // IIncrementOperators
        //
 
        /// <inheritdoc cref="IIncrementOperators{TSelf}.op_Increment(TSelf)" />
        static byte IIncrementOperators<byte>.operator ++(byte value) => ++value;
 
        /// <inheritdoc cref="IIncrementOperators{TSelf}.op_CheckedIncrement(TSelf)" />
        static byte IIncrementOperators<byte>.operator checked ++(byte value) => checked(++value);
 
        //
        // IMinMaxValue
        //
 
        /// <inheritdoc cref="IMinMaxValue{TSelf}.MinValue" />
        static byte IMinMaxValue<byte>.MinValue => MinValue;
 
        /// <inheritdoc cref="IMinMaxValue{TSelf}.MaxValue" />
        static byte IMinMaxValue<byte>.MaxValue => MaxValue;
 
        //
        // IModulusOperators
        //
 
        /// <inheritdoc cref="IModulusOperators{TSelf, TOther, TResult}.op_Modulus(TSelf, TOther)" />
        static byte IModulusOperators<byte, byte, byte>.operator %(byte left, byte right) => (byte)(left % right);
 
        //
        // IMultiplicativeIdentity
        //
 
        /// <inheritdoc cref="IMultiplicativeIdentity{TSelf, TResult}.MultiplicativeIdentity" />
        static byte IMultiplicativeIdentity<byte, byte>.MultiplicativeIdentity => MultiplicativeIdentity;
 
        //
        // IMultiplyOperators
        //
 
        /// <inheritdoc cref="IMultiplyOperators{TSelf, TOther, TResult}.op_Multiply(TSelf, TOther)" />
        static byte IMultiplyOperators<byte, byte, byte>.operator *(byte left, byte right) => (byte)(left * right);
 
        /// <inheritdoc cref="IMultiplyOperators{TSelf, TOther, TResult}.op_CheckedMultiply(TSelf, TOther)" />
        static byte IMultiplyOperators<byte, byte, byte>.operator checked *(byte left, byte right) => checked((byte)(left * right));
 
        //
        // INumber
        //
 
        /// <inheritdoc cref="INumber{TSelf}.Clamp(TSelf, TSelf, TSelf)" />
        public static byte Clamp(byte value, byte min, byte max) => Math.Clamp(value, min, max);
 
        /// <inheritdoc cref="INumber{TSelf}.CopySign(TSelf, TSelf)" />
        static byte INumber<byte>.CopySign(byte value, byte sign) => value;
 
        /// <inheritdoc cref="INumber{TSelf}.Max(TSelf, TSelf)" />
        public static byte Max(byte x, byte y) => Math.Max(x, y);
 
        /// <inheritdoc cref="INumber{TSelf}.MaxNumber(TSelf, TSelf)" />
        static byte INumber<byte>.MaxNumber(byte x, byte y) => Max(x, y);
 
        /// <inheritdoc cref="INumber{TSelf}.Min(TSelf, TSelf)" />
        public static byte Min(byte x, byte y) => Math.Min(x, y);
 
        /// <inheritdoc cref="INumber{TSelf}.MinNumber(TSelf, TSelf)" />
        static byte INumber<byte>.MinNumber(byte x, byte y) => Min(x, y);
 
        /// <inheritdoc cref="INumber{TSelf}.Sign(TSelf)" />
        public static int Sign(byte value) => (value == 0) ? 0 : 1;
 
        //
        // INumberBase
        //
 
        /// <inheritdoc cref="INumberBase{TSelf}.One" />
        static byte INumberBase<byte>.One => One;
 
        /// <inheritdoc cref="INumberBase{TSelf}.Radix" />
        static int INumberBase<byte>.Radix => 2;
 
        /// <inheritdoc cref="INumberBase{TSelf}.Zero" />
        static byte INumberBase<byte>.Zero => Zero;
 
        /// <inheritdoc cref="INumberBase{TSelf}.Abs(TSelf)" />
        static byte INumberBase<byte>.Abs(byte value) => value;
 
        /// <inheritdoc cref="INumberBase{TSelf}.CreateChecked{TOther}(TOther)" />
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static byte CreateChecked<TOther>(TOther value)
            where TOther : INumberBase<TOther>
        {
            byte result;
 
            if (typeof(TOther) == typeof(byte))
            {
                result = (byte)(object)value;
            }
            else if (!TryConvertFromChecked(value, out result) && !TOther.TryConvertToChecked(value, out result))
            {
                ThrowHelper.ThrowNotSupportedException();
            }
 
            return result;
        }
 
        /// <inheritdoc cref="INumberBase{TSelf}.CreateSaturating{TOther}(TOther)" />
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static byte CreateSaturating<TOther>(TOther value)
            where TOther : INumberBase<TOther>
        {
            byte result;
 
            if (typeof(TOther) == typeof(byte))
            {
                result = (byte)(object)value;
            }
            else if (!TryConvertFromSaturating(value, out result) && !TOther.TryConvertToSaturating(value, out result))
            {
                ThrowHelper.ThrowNotSupportedException();
            }
 
            return result;
        }
 
        /// <inheritdoc cref="INumberBase{TSelf}.CreateTruncating{TOther}(TOther)" />
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static byte CreateTruncating<TOther>(TOther value)
            where TOther : INumberBase<TOther>
        {
            byte result;
 
            if (typeof(TOther) == typeof(byte))
            {
                result = (byte)(object)value;
            }
            else if (!TryConvertFromTruncating(value, out result) && !TOther.TryConvertToTruncating(value, out result))
            {
                ThrowHelper.ThrowNotSupportedException();
            }
 
            return result;
        }
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsCanonical(TSelf)" />
        static bool INumberBase<byte>.IsCanonical(byte value) => true;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsComplexNumber(TSelf)" />
        static bool INumberBase<byte>.IsComplexNumber(byte value) => false;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsEvenInteger(TSelf)" />
        public static bool IsEvenInteger(byte value) => (value & 1) == 0;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsFinite(TSelf)" />
        static bool INumberBase<byte>.IsFinite(byte value) => true;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsImaginaryNumber(TSelf)" />
        static bool INumberBase<byte>.IsImaginaryNumber(byte value) => false;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsInfinity(TSelf)" />
        static bool INumberBase<byte>.IsInfinity(byte value) => false;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsInteger(TSelf)" />
        static bool INumberBase<byte>.IsInteger(byte value) => true;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsNaN(TSelf)" />
        static bool INumberBase<byte>.IsNaN(byte value) => false;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsNegative(TSelf)" />
        static bool INumberBase<byte>.IsNegative(byte value) => false;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsNegativeInfinity(TSelf)" />
        static bool INumberBase<byte>.IsNegativeInfinity(byte value) => false;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsNormal(TSelf)" />
        static bool INumberBase<byte>.IsNormal(byte value) => value != 0;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsOddInteger(TSelf)" />
        public static bool IsOddInteger(byte value) => (value & 1) != 0;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsPositive(TSelf)" />
        static bool INumberBase<byte>.IsPositive(byte value) => true;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsPositiveInfinity(TSelf)" />
        static bool INumberBase<byte>.IsPositiveInfinity(byte value) => false;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsRealNumber(TSelf)" />
        static bool INumberBase<byte>.IsRealNumber(byte value) => true;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsSubnormal(TSelf)" />
        static bool INumberBase<byte>.IsSubnormal(byte value) => false;
 
        /// <inheritdoc cref="INumberBase{TSelf}.IsZero(TSelf)" />
        static bool INumberBase<byte>.IsZero(byte value) => (value == 0);
 
        /// <inheritdoc cref="INumberBase{TSelf}.MaxMagnitude(TSelf, TSelf)" />
        static byte INumberBase<byte>.MaxMagnitude(byte x, byte y) => Max(x, y);
 
        /// <inheritdoc cref="INumberBase{TSelf}.MaxMagnitudeNumber(TSelf, TSelf)" />
        static byte INumberBase<byte>.MaxMagnitudeNumber(byte x, byte y) => Max(x, y);
 
        /// <inheritdoc cref="INumberBase{TSelf}.MinMagnitude(TSelf, TSelf)" />
        static byte INumberBase<byte>.MinMagnitude(byte x, byte y) => Min(x, y);
 
        /// <inheritdoc cref="INumberBase{TSelf}.MinMagnitudeNumber(TSelf, TSelf)" />
        static byte INumberBase<byte>.MinMagnitudeNumber(byte x, byte y) => Min(x, y);
 
        /// <inheritdoc cref="INumberBase{TSelf}.TryConvertFromChecked{TOther}(TOther, out TSelf)" />
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static bool INumberBase<byte>.TryConvertFromChecked<TOther>(TOther value, out byte result) => TryConvertFromChecked(value, out result);
 
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static bool TryConvertFromChecked<TOther>(TOther value, out byte result)
            where TOther : INumberBase<TOther>
        {
            // In order to reduce overall code duplication and improve the inlinabilty of these
            // methods for the corelib types we have `ConvertFrom` handle the same sign and
            // `ConvertTo` handle the opposite sign. However, since there is an uneven split
            // between signed and unsigned types, the one that handles unsigned will also
            // handle `Decimal`.
            //
            // That is, `ConvertFrom` for `byte` will handle the other unsigned types and
            // `ConvertTo` will handle the signed types
 
            if (typeof(TOther) == typeof(char))
            {
                char actualValue = (char)(object)value;
                result = checked((byte)actualValue);
                return true;
            }
            else if (typeof(TOther) == typeof(decimal))
            {
                decimal actualValue = (decimal)(object)value;
                result = checked((byte)actualValue);
                return true;
            }
            else if (typeof(TOther) == typeof(ushort))
            {
                ushort actualValue = (ushort)(object)value;
                result = checked((byte)actualValue);
                return true;
            }
            else if (typeof(TOther) == typeof(uint))
            {
                uint actualValue = (uint)(object)value;
                result = checked((byte)actualValue);
                return true;
            }
            else if (typeof(TOther) == typeof(ulong))
            {
                ulong actualValue = (ulong)(object)value;
                result = checked((byte)actualValue);
                return true;
            }
            else if (typeof(TOther) == typeof(UInt128))
            {
                UInt128 actualValue = (UInt128)(object)value;
                result = checked((byte)actualValue);
                return true;
            }
            else if (typeof(TOther) == typeof(nuint))
            {
                nuint actualValue = (nuint)(object)value;
                result = checked((byte)actualValue);
                return true;
            }
            else
            {
                result = default;
                return false;
            }
        }
 
        /// <inheritdoc cref="INumberBase{TSelf}.TryConvertFromSaturating{TOther}(TOther, out TSelf)" />
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static bool INumberBase<byte>.TryConvertFromSaturating<TOther>(TOther value, out byte result) => TryConvertFromSaturating(value, out result);
 
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static bool TryConvertFromSaturating<TOther>(TOther value, out byte result)
            where TOther : INumberBase<TOther>
        {
            // In order to reduce overall code duplication and improve the inlinabilty of these
            // methods for the corelib types we have `ConvertFrom` handle the same sign and
            // `ConvertTo` handle the opposite sign. However, since there is an uneven split
            // between signed and unsigned types, the one that handles unsigned will also
            // handle `Decimal`.
            //
            // That is, `ConvertFrom` for `byte` will handle the other unsigned types and
            // `ConvertTo` will handle the signed types
 
            if (typeof(TOther) == typeof(char))
            {
                char actualValue = (char)(object)value;
                result = (actualValue >= MaxValue) ? MaxValue : (byte)actualValue;
                return true;
            }
            else if (typeof(TOther) == typeof(decimal))
            {
                decimal actualValue = (decimal)(object)value;
                result = (actualValue >= MaxValue) ? MaxValue :
                         (actualValue <= MinValue) ? MinValue : (byte)actualValue;
                return true;
            }
            else if (typeof(TOther) == typeof(ushort))
            {
                ushort actualValue = (ushort)(object)value;
                result = (actualValue >= MaxValue) ? MaxValue : (byte)actualValue;
                return true;
            }
            else if (typeof(TOther) == typeof(uint))
            {
                uint actualValue = (uint)(object)value;
                result = (actualValue >= MaxValue) ? MaxValue : (byte)actualValue;
                return true;
            }
            else if (typeof(TOther) == typeof(ulong))
            {
                ulong actualValue = (ulong)(object)value;
                result = (actualValue >= MaxValue) ? MaxValue : (byte)actualValue;
                return true;
            }
            else if (typeof(TOther) == typeof(UInt128))
            {
                UInt128 actualValue = (UInt128)(object)value;
                result = (actualValue >= MaxValue) ? MaxValue : (byte)actualValue;
                return true;
            }
            else if (typeof(TOther) == typeof(nuint))
            {
                nuint actualValue = (nuint)(object)value;
                result = (actualValue >= MaxValue) ? MaxValue : (byte)actualValue;
                return true;
            }
            else
            {
                result = default;
                return false;
            }
        }
 
        /// <inheritdoc cref="INumberBase{TSelf}.TryConvertFromTruncating{TOther}(TOther, out TSelf)" />
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static bool INumberBase<byte>.TryConvertFromTruncating<TOther>(TOther value, out byte result) => TryConvertFromTruncating(value, out result);
 
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static bool TryConvertFromTruncating<TOther>(TOther value, out byte result)
            where TOther : INumberBase<TOther>
        {
            // In order to reduce overall code duplication and improve the inlinabilty of these
            // methods for the corelib types we have `ConvertFrom` handle the same sign and
            // `ConvertTo` handle the opposite sign. However, since there is an uneven split
            // between signed and unsigned types, the one that handles unsigned will also
            // handle `Decimal`.
            //
            // That is, `ConvertFrom` for `byte` will handle the other unsigned types and
            // `ConvertTo` will handle the signed types
 
            if (typeof(TOther) == typeof(char))
            {
                char actualValue = (char)(object)value;
                result = (byte)actualValue;
                return true;
            }
            else if (typeof(TOther) == typeof(decimal))
            {
                decimal actualValue = (decimal)(object)value;
                result = (actualValue >= MaxValue) ? MaxValue :
                         (actualValue <= MinValue) ? MinValue : (byte)actualValue;
                return true;
            }
            else if (typeof(TOther) == typeof(ushort))
            {
                ushort actualValue = (ushort)(object)value;
                result = (byte)actualValue;
                return true;
            }
            else if (typeof(TOther) == typeof(uint))
            {
                uint actualValue = (uint)(object)value;
                result = (byte)actualValue;
                return true;
            }
            else if (typeof(TOther) == typeof(ulong))
            {
                ulong actualValue = (ulong)(object)value;
                result = (byte)actualValue;
                return true;
            }
            else if (typeof(TOther) == typeof(UInt128))
            {
                UInt128 actualValue = (UInt128)(object)value;
                result = (byte)actualValue;
                return true;
            }
            else if (typeof(TOther) == typeof(nuint))
            {
                nuint actualValue = (nuint)(object)value;
                result = (byte)actualValue;
                return true;
            }
            else
            {
                result = default;
                return false;
            }
        }
 
        /// <inheritdoc cref="INumberBase{TSelf}.TryConvertToChecked{TOther}(TSelf, out TOther)" />
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static bool INumberBase<byte>.TryConvertToChecked<TOther>(byte value, [MaybeNullWhen(false)] out TOther result)
        {
            // In order to reduce overall code duplication and improve the inlinabilty of these
            // methods for the corelib types we have `ConvertFrom` handle the same sign and
            // `ConvertTo` handle the opposite sign. However, since there is an uneven split
            // between signed and unsigned types, the one that handles unsigned will also
            // handle `Decimal`.
            //
            // That is, `ConvertFrom` for `byte` will handle the other unsigned types and
            // `ConvertTo` will handle the unsigned types
 
            if (typeof(TOther) == typeof(double))
            {
                double actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(Half))
            {
                Half actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(short))
            {
                short actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(int))
            {
                int actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(long))
            {
                long actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(Int128))
            {
                Int128 actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(nint))
            {
                nint actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(sbyte))
            {
                sbyte actualResult = checked((sbyte)value);
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(float))
            {
                float actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else
            {
                result = default;
                return false;
            }
        }
 
        /// <inheritdoc cref="INumberBase{TSelf}.TryConvertToSaturating{TOther}(TSelf, out TOther)" />
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static bool INumberBase<byte>.TryConvertToSaturating<TOther>(byte value, [MaybeNullWhen(false)] out TOther result)
        {
            // In order to reduce overall code duplication and improve the inlinabilty of these
            // methods for the corelib types we have `ConvertFrom` handle the same sign and
            // `ConvertTo` handle the opposite sign. However, since there is an uneven split
            // between signed and unsigned types, the one that handles unsigned will also
            // handle `Decimal`.
            //
            // That is, `ConvertFrom` for `byte` will handle the other unsigned types and
            // `ConvertTo` will handle the unsigned types
 
            if (typeof(TOther) == typeof(double))
            {
                double actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(Half))
            {
                Half actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(short))
            {
                short actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(int))
            {
                int actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(long))
            {
                long actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(Int128))
            {
                Int128 actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(nint))
            {
                nint actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(sbyte))
            {
                sbyte actualResult = (value >= sbyte.MaxValue) ? sbyte.MaxValue : (sbyte)value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(float))
            {
                float actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else
            {
                result = default;
                return false;
            }
        }
 
        /// <inheritdoc cref="INumberBase{TSelf}.TryConvertToTruncating{TOther}(TSelf, out TOther)" />
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        static bool INumberBase<byte>.TryConvertToTruncating<TOther>(byte value, [MaybeNullWhen(false)] out TOther result)
        {
            // In order to reduce overall code duplication and improve the inlinabilty of these
            // methods for the corelib types we have `ConvertFrom` handle the same sign and
            // `ConvertTo` handle the opposite sign. However, since there is an uneven split
            // between signed and unsigned types, the one that handles unsigned will also
            // handle `Decimal`.
            //
            // That is, `ConvertFrom` for `byte` will handle the other unsigned types and
            // `ConvertTo` will handle the unsigned types
 
            if (typeof(TOther) == typeof(double))
            {
                double actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(Half))
            {
                Half actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(short))
            {
                short actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(int))
            {
                int actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(long))
            {
                long actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(Int128))
            {
                Int128 actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(nint))
            {
                nint actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(sbyte))
            {
                sbyte actualResult = (sbyte)value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else if (typeof(TOther) == typeof(float))
            {
                float actualResult = value;
                result = (TOther)(object)actualResult;
                return true;
            }
            else
            {
                result = default;
                return false;
            }
        }
 
        //
        // IParsable
        //
 
        /// <inheritdoc cref="IParsable{TSelf}.TryParse(string?, IFormatProvider?, out TSelf)" />
        public static bool TryParse([NotNullWhen(true)] string? s, IFormatProvider? provider, out byte result) => TryParse(s, NumberStyles.Integer, provider, out result);
 
        //
        // IShiftOperators
        //
 
        /// <inheritdoc cref="IShiftOperators{TSelf, TOther, TResult}.op_LeftShift(TSelf, TOther)" />
        static byte IShiftOperators<byte, int, byte>.operator <<(byte value, int shiftAmount) => (byte)(value << shiftAmount);
 
        /// <inheritdoc cref="IShiftOperators{TSelf, TOther, TResult}.op_RightShift(TSelf, TOther)" />
        static byte IShiftOperators<byte, int, byte>.operator >>(byte value, int shiftAmount) => (byte)(value >> shiftAmount);
 
        /// <inheritdoc cref="IShiftOperators{TSelf, TOther, TResult}.op_UnsignedRightShift(TSelf, TOther)" />
        static byte IShiftOperators<byte, int, byte>.operator >>>(byte value, int shiftAmount) => (byte)(value >>> shiftAmount);
 
        //
        // ISpanParsable
        //
 
        /// <inheritdoc cref="ISpanParsable{TSelf}.Parse(ReadOnlySpan{char}, IFormatProvider?)" />
        public static byte Parse(ReadOnlySpan<char> s, IFormatProvider? provider) => Parse(s, NumberStyles.Integer, provider);
 
        /// <inheritdoc cref="ISpanParsable{TSelf}.TryParse(ReadOnlySpan{char}, IFormatProvider?, out TSelf)" />
        public static bool TryParse(ReadOnlySpan<char> s, IFormatProvider? provider, out byte result) => TryParse(s, NumberStyles.Integer, provider, out result);
 
        //
        // ISubtractionOperators
        //
 
        /// <inheritdoc cref="ISubtractionOperators{TSelf, TOther, TResult}.op_Subtraction(TSelf, TOther)" />
        static byte ISubtractionOperators<byte, byte, byte>.operator -(byte left, byte right) => (byte)(left - right);
 
        /// <inheritdoc cref="ISubtractionOperators{TSelf, TOther, TResult}.op_CheckedSubtraction(TSelf, TOther)" />
        static byte ISubtractionOperators<byte, byte, byte>.operator checked -(byte left, byte right) => checked((byte)(left - right));
 
        //
        // IUnaryNegationOperators
        //
 
        /// <inheritdoc cref="IUnaryNegationOperators{TSelf, TResult}.op_UnaryNegation(TSelf)" />
        static byte IUnaryNegationOperators<byte, byte>.operator -(byte value) => (byte)(-value);
 
        /// <inheritdoc cref="IUnaryNegationOperators{TSelf, TResult}.op_CheckedUnaryNegation(TSelf)" />
        static byte IUnaryNegationOperators<byte, byte>.operator checked -(byte value) => checked((byte)(-value));
 
        //
        // IUnaryPlusOperators
        //
 
        /// <inheritdoc cref="IUnaryPlusOperators{TSelf, TResult}.op_UnaryPlus(TSelf)" />
        static byte IUnaryPlusOperators<byte, byte>.operator +(byte value) => (byte)(+value);
 
        //
        // IUtf8SpanParsable
        //
 
        /// <inheritdoc cref="INumberBase{TSelf}.Parse(ReadOnlySpan{byte}, NumberStyles, IFormatProvider?)" />
        public static byte Parse(ReadOnlySpan<byte> utf8Text, NumberStyles style = NumberStyles.Integer, IFormatProvider? provider = null)
        {
            NumberFormatInfo.ValidateParseStyleInteger(style);
            return Number.ParseBinaryInteger<byte, byte>(utf8Text, style, NumberFormatInfo.GetInstance(provider));
        }
 
        /// <inheritdoc cref="INumberBase{TSelf}.TryParse(ReadOnlySpan{byte}, NumberStyles, IFormatProvider?, out TSelf)" />
        public static bool TryParse(ReadOnlySpan<byte> utf8Text, NumberStyles style, IFormatProvider? provider, out byte result)
        {
            NumberFormatInfo.ValidateParseStyleInteger(style);
            return Number.TryParseBinaryInteger(utf8Text, style, NumberFormatInfo.GetInstance(provider), out result) == Number.ParsingStatus.OK;
        }
 
        /// <inheritdoc cref="IUtf8SpanParsable{TSelf}.Parse(ReadOnlySpan{byte}, IFormatProvider?)" />
        public static byte Parse(ReadOnlySpan<byte> utf8Text, IFormatProvider? provider) => Parse(utf8Text, NumberStyles.Integer, provider);
 
        /// <inheritdoc cref="IUtf8SpanParsable{TSelf}.TryParse(ReadOnlySpan{byte}, IFormatProvider?, out TSelf)" />
        public static bool TryParse(ReadOnlySpan<byte> utf8Text, IFormatProvider? provider, out byte result) => TryParse(utf8Text, NumberStyles.Integer, provider, out result);
 
        //
        // IUtfChar
        //
 
        static byte IUtfChar<byte>.CastFrom(byte value) => value;
        static byte IUtfChar<byte>.CastFrom(char value) => (byte)value;
        static byte IUtfChar<byte>.CastFrom(int value) => (byte)value;
        static byte IUtfChar<byte>.CastFrom(uint value) => (byte)value;
        static byte IUtfChar<byte>.CastFrom(ulong value) => (byte)value;
 
        static uint IUtfChar<byte>.CastToUInt32(byte value) => value;
 
        //
        // IBinaryIntegerParseAndFormatInfo
        //
 
        static bool IBinaryIntegerParseAndFormatInfo<byte>.IsSigned => false;
 
        static int IBinaryIntegerParseAndFormatInfo<byte>.MaxDigitCount => 3; // 255
 
        static int IBinaryIntegerParseAndFormatInfo<byte>.MaxHexDigitCount => 2; // 0xFF
 
        static byte IBinaryIntegerParseAndFormatInfo<byte>.MaxValueDiv10 => MaxValue / 10;
 
        static string IBinaryIntegerParseAndFormatInfo<byte>.OverflowMessage => SR.Overflow_Byte;
 
        static bool IBinaryIntegerParseAndFormatInfo<byte>.IsGreaterThanAsUnsigned(byte left, byte right) => left > right;
 
        static byte IBinaryIntegerParseAndFormatInfo<byte>.MultiplyBy10(byte value) => (byte)(value * 10);
 
        static byte IBinaryIntegerParseAndFormatInfo<byte>.MultiplyBy16(byte value) => (byte)(value * 16);
    }
}