|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
using System.Runtime.Intrinsics;
namespace System.Numerics.Tensors
{
public static partial class TensorPrimitives
{
/// <summary>Computes the distance between two points, specified as non-empty, equal-length tensors of numbers, in Euclidean space.</summary>
/// <param name="x">The first tensor, represented as a span.</param>
/// <param name="y">The second tensor, represented as a span.</param>
/// <returns>The Euclidean distance.</returns>
/// <exception cref="ArgumentException">Length of <paramref name="x" /> must be same as length of <paramref name="y" />.</exception>
/// <exception cref="ArgumentException"><paramref name="x" /> and <paramref name="y" /> must not be empty.</exception>
/// <remarks>
/// <para>
/// This method effectively computes the equivalent of:
/// <c>
/// Span<T> difference = ...;
/// TensorPrimitives.Subtract(x, y, difference);
/// T result = <typeparamref name="T"/>.Sqrt(TensorPrimitives.SumOfSquares(difference));
/// </c>
/// but without requiring additional temporary storage for the intermediate differences.
/// </para>
/// <para>
/// If any element in either input tensor is equal to <see cref="IFloatingPointIeee754{TSelf}.NaN"/>, NaN is returned.
/// </para>
/// <para>
/// This method may call into the underlying C runtime or employ instructions specific to the current architecture. Exact results may differ between different
/// operating systems or architectures.
/// </para>
/// </remarks>
public static T Distance<T>(ReadOnlySpan<T> x, ReadOnlySpan<T> y)
where T : IRootFunctions<T>
{
if (x.IsEmpty)
{
ThrowHelper.ThrowArgument_SpansMustBeNonEmpty();
}
return T.Sqrt(Aggregate<T, SubtractSquaredOperator<T>, AddOperator<T>>(x, y));
}
/// <summary>(x - y) * (x - y)</summary>
internal readonly struct SubtractSquaredOperator<T> : IBinaryOperator<T> where T : ISubtractionOperators<T, T, T>, IMultiplyOperators<T, T, T>
{
public static bool Vectorizable => true;
public static T Invoke(T x, T y)
{
T tmp = x - y;
return tmp * tmp;
}
public static Vector128<T> Invoke(Vector128<T> x, Vector128<T> y)
{
Vector128<T> tmp = x - y;
return tmp * tmp;
}
public static Vector256<T> Invoke(Vector256<T> x, Vector256<T> y)
{
Vector256<T> tmp = x - y;
return tmp * tmp;
}
public static Vector512<T> Invoke(Vector512<T> x, Vector512<T> y)
{
Vector512<T> tmp = x - y;
return tmp * tmp;
}
}
}
}
|