|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using MS.Internal;
using System.Windows.Media.Composition;
using System.Windows.Markup;
using UnsafeNativeMethods = MS.Win32.PresentationCore.UnsafeNativeMethods;
namespace System.Windows.Media
{
#region PathGeometryInternalFlags
[System.Flags]
internal enum PathGeometryInternalFlags
{
None = 0x0,
Invalid = 0x1,
Dirty = 0x2,
BoundsValid = 0x4
}
#endregion
#region PathGeometry
/// <summary>
/// PathGeometry
/// </summary>
[ContentProperty("Figures")]
public sealed partial class PathGeometry : Geometry
{
#region Constructors
/// <summary>
///
/// </summary>
public PathGeometry()
{
}
/// <summary>
/// Constructor
/// </summary>
/// <param name="figures">A collection of figures</param>
public PathGeometry(IEnumerable<PathFigure> figures)
{
ArgumentNullException.ThrowIfNull(figures);
foreach (PathFigure item in figures)
{
Figures.Add(item);
}
SetDirty();
}
/// <summary>
/// Constructor
/// </summary>
/// <param name="figures">A collection of figures</param>
/// <param name="fillRule">The fill rule (OddEven or NonZero)</param>
/// <param name="transform">A transformation to apply to the input</param>
public PathGeometry(IEnumerable<PathFigure> figures, FillRule fillRule, Transform transform)
{
Transform = transform;
if (ValidateEnums.IsFillRuleValid(fillRule))
{
FillRule = fillRule;
ArgumentNullException.ThrowIfNull(figures);
foreach (PathFigure item in figures)
{
Figures.Add(item);
}
SetDirty();
}
}
/// <summary>
/// Static "CreateFromGeometry" method which creates a new PathGeometry from the Geometry specified.
/// </summary>
/// <param name="geometry">
/// Geometry - The Geometry which will be used as the basis for the newly created
/// PathGeometry. The new Geometry will be based on the current value of all properties.
/// </param>
public static PathGeometry CreateFromGeometry(Geometry geometry)
{
if (geometry == null)
{
return null;
}
return geometry.GetAsPathGeometry();
}
/// <summary>
/// Static method which parses a PathGeometryData and makes calls into the provided context sink.
/// This can be used to build a PathGeometry, for readback, etc.
/// </summary>
internal static void ParsePathGeometryData(PathGeometryData pathData, CapacityStreamGeometryContext ctx)
{
if (pathData.IsEmpty())
{
return;
}
unsafe
{
int currentOffset = 0;
fixed (byte* pbData = pathData.SerializedData)
{
// This assert is a logical correctness test
Debug.Assert(pathData.Size >= currentOffset + sizeof(MIL_PATHGEOMETRY));
// ... while this assert tests "physical" correctness (i.e. are we running out of buffer).
Invariant.Assert(pathData.SerializedData.Length >= currentOffset + sizeof(MIL_PATHGEOMETRY));
MIL_PATHGEOMETRY *pPathGeometry = (MIL_PATHGEOMETRY*)pbData;
// Move the current offset to after the Path's data
currentOffset += sizeof(MIL_PATHGEOMETRY);
// Are there any Figures to add?
if (pPathGeometry->FigureCount > 0)
{
// Allocate the correct number of Figures up front
ctx.SetFigureCount((int)pPathGeometry->FigureCount);
// ... and iterate on the Figures.
for (int i = 0; i < pPathGeometry->FigureCount; i++)
{
// We only expect well-formed data, but we should assert that we're not reading
// too much data.
Debug.Assert(pathData.SerializedData.Length >= currentOffset + sizeof(MIL_PATHFIGURE));
MIL_PATHFIGURE *pPathFigure = (MIL_PATHFIGURE*)(pbData + currentOffset);
// Move the current offset to the after of the Figure's data
currentOffset += sizeof(MIL_PATHFIGURE);
ctx.BeginFigure(pPathFigure->StartPoint,
((pPathFigure->Flags & MilPathFigureFlags.IsFillable) != 0),
((pPathFigure->Flags & MilPathFigureFlags.IsClosed) != 0));
if (pPathFigure->Count > 0)
{
// Allocate the correct number of Segments up front
ctx.SetSegmentCount((int)pPathFigure->Count);
// ... and iterate on the Segments.
for (int j = 0; j < pPathFigure->Count; j++)
{
// We only expect well-formed data, but we should assert that we're not reading too much data.
Debug.Assert(pathData.SerializedData.Length >= currentOffset + sizeof(MIL_SEGMENT));
Debug.Assert(pathData.Size >= currentOffset + sizeof(MIL_SEGMENT));
MIL_SEGMENT *pSegment = (MIL_SEGMENT*)(pbData + currentOffset);
switch (pSegment->Type)
{
case MIL_SEGMENT_TYPE.MilSegmentLine:
{
// We only expect well-formed data, but we should assert that we're not reading too much data.
Debug.Assert(pathData.SerializedData.Length >= currentOffset + sizeof(MIL_SEGMENT_LINE));
Debug.Assert(pathData.Size >= currentOffset + sizeof(MIL_SEGMENT_LINE));
MIL_SEGMENT_LINE *pSegmentLine = (MIL_SEGMENT_LINE*)(pbData + currentOffset);
ctx.LineTo(pSegmentLine->Point,
((pSegmentLine->Flags & MILCoreSegFlags.SegIsAGap) == 0),
((pSegmentLine->Flags & MILCoreSegFlags.SegSmoothJoin) != 0));
currentOffset += sizeof(MIL_SEGMENT_LINE);
}
break;
case MIL_SEGMENT_TYPE.MilSegmentBezier:
{
// We only expect well-formed data, but we should assert that we're not reading too much data.
Debug.Assert(pathData.SerializedData.Length >= currentOffset + sizeof(MIL_SEGMENT_BEZIER));
Debug.Assert(pathData.Size >= currentOffset + sizeof(MIL_SEGMENT_BEZIER));
MIL_SEGMENT_BEZIER *pSegmentBezier = (MIL_SEGMENT_BEZIER*)(pbData + currentOffset);
ctx.BezierTo(pSegmentBezier->Point1,
pSegmentBezier->Point2,
pSegmentBezier->Point3,
((pSegmentBezier->Flags & MILCoreSegFlags.SegIsAGap) == 0),
((pSegmentBezier->Flags & MILCoreSegFlags.SegSmoothJoin) != 0));
currentOffset += sizeof(MIL_SEGMENT_BEZIER);
}
break;
case MIL_SEGMENT_TYPE.MilSegmentQuadraticBezier:
{
// We only expect well-formed data, but we should assert that we're not reading too much data.
Debug.Assert(pathData.SerializedData.Length >= currentOffset + sizeof(MIL_SEGMENT_QUADRATICBEZIER));
Debug.Assert(pathData.Size >= currentOffset + sizeof(MIL_SEGMENT_QUADRATICBEZIER));
MIL_SEGMENT_QUADRATICBEZIER *pSegmentQuadraticBezier = (MIL_SEGMENT_QUADRATICBEZIER*)(pbData + currentOffset);
ctx.QuadraticBezierTo(pSegmentQuadraticBezier->Point1,
pSegmentQuadraticBezier->Point2,
((pSegmentQuadraticBezier->Flags & MILCoreSegFlags.SegIsAGap) == 0),
((pSegmentQuadraticBezier->Flags & MILCoreSegFlags.SegSmoothJoin) != 0));
currentOffset += sizeof(MIL_SEGMENT_QUADRATICBEZIER);
}
break;
case MIL_SEGMENT_TYPE.MilSegmentArc:
{
// We only expect well-formed data, but we should assert that we're not reading too much data.
Debug.Assert(pathData.SerializedData.Length >= currentOffset + sizeof(MIL_SEGMENT_ARC));
Debug.Assert(pathData.Size >= currentOffset + sizeof(MIL_SEGMENT_ARC));
MIL_SEGMENT_ARC *pSegmentArc = (MIL_SEGMENT_ARC*)(pbData + currentOffset);
ctx.ArcTo(pSegmentArc->Point,
pSegmentArc->Size,
pSegmentArc->XRotation,
(pSegmentArc->LargeArc != 0),
(pSegmentArc->Sweep == 0) ? SweepDirection.Counterclockwise : SweepDirection.Clockwise,
((pSegmentArc->Flags & MILCoreSegFlags.SegIsAGap) == 0),
((pSegmentArc->Flags & MILCoreSegFlags.SegSmoothJoin) != 0));
currentOffset += sizeof(MIL_SEGMENT_ARC);
}
break;
case MIL_SEGMENT_TYPE.MilSegmentPolyLine:
case MIL_SEGMENT_TYPE.MilSegmentPolyBezier:
case MIL_SEGMENT_TYPE.MilSegmentPolyQuadraticBezier:
{
// We only expect well-formed data, but we should assert that we're not reading too much data.
Debug.Assert(pathData.SerializedData.Length >= currentOffset + sizeof(MIL_SEGMENT_POLY));
Debug.Assert(pathData.Size >= currentOffset + sizeof(MIL_SEGMENT_POLY));
MIL_SEGMENT_POLY *pSegmentPoly = (MIL_SEGMENT_POLY*)(pbData + currentOffset);
Debug.Assert(pSegmentPoly->Count <= Int32.MaxValue);
if (pSegmentPoly->Count > 0)
{
List<Point> points = new List<Point>((int)pSegmentPoly->Count);
// We only expect well-formed data, but we should assert that we're not reading too much data.
Debug.Assert(pathData.SerializedData.Length >=
currentOffset +
sizeof(MIL_SEGMENT_POLY) +
(int)pSegmentPoly->Count * sizeof(Point));
Debug.Assert(pathData.Size >=
currentOffset +
sizeof(MIL_SEGMENT_POLY) +
(int)pSegmentPoly->Count * sizeof(Point));
Point* pPoint = (Point*)(pbData + currentOffset + sizeof(MIL_SEGMENT_POLY));
for (uint k = 0; k < pSegmentPoly->Count; k++)
{
points.Add(*pPoint);
pPoint++;
}
switch (pSegment->Type)
{
case MIL_SEGMENT_TYPE.MilSegmentPolyLine:
ctx.PolyLineTo(points,
((pSegmentPoly->Flags & MILCoreSegFlags.SegIsAGap) == 0),
((pSegmentPoly->Flags & MILCoreSegFlags.SegSmoothJoin) != 0));
break;
case MIL_SEGMENT_TYPE.MilSegmentPolyBezier:
ctx.PolyBezierTo(points,
((pSegmentPoly->Flags & MILCoreSegFlags.SegIsAGap) == 0),
((pSegmentPoly->Flags & MILCoreSegFlags.SegSmoothJoin) != 0));
break;
case MIL_SEGMENT_TYPE.MilSegmentPolyQuadraticBezier:
ctx.PolyQuadraticBezierTo(points,
((pSegmentPoly->Flags & MILCoreSegFlags.SegIsAGap) == 0),
((pSegmentPoly->Flags & MILCoreSegFlags.SegSmoothJoin) != 0));
break;
}
}
currentOffset += sizeof(MIL_SEGMENT_POLY) + (int)pSegmentPoly->Count * sizeof(Point);
}
break;
#if DEBUG
case MIL_SEGMENT_TYPE.MilSegmentNone:
throw new System.InvalidOperationException();
default:
throw new System.InvalidOperationException();
#endif
}
}
}
}
}
}
}
}
#endregion
/// <summary>
/// Implementation of <see cref="System.Windows.Freezable.OnChanged">Freezable.OnChanged</see>.
/// </summary>
protected override void OnChanged()
{
SetDirty();
base.OnChanged();
}
#region GetTransformedFigureCollection
internal override PathFigureCollection GetTransformedFigureCollection(Transform transform)
{
// Combine the transform argument with the internal transform
Matrix matrix = GetCombinedMatrix(transform);
// Get the figure collection
PathFigureCollection result;
if (matrix.IsIdentity)
{
// There is no need to transform, return the figure collection
result = Figures;
if (result == null)
{
result = new PathFigureCollection();
}
}
else
{
// Return a transformed copy of the figure collection
result = new PathFigureCollection();
PathFigureCollection figures = Figures;
int count = figures != null ? figures.Count : 0;
for (int i = 0; i < count; ++i)
{
PathFigure figure = figures.Internal_GetItem(i);
result.Add(figure.GetTransformedCopy(matrix));
}
}
Debug.Assert(result != null);
return result;
}
#endregion
#region PathFigure/Geometry
/// <summary>
///
/// </summary>
public void AddGeometry(Geometry geometry)
{
ArgumentNullException.ThrowIfNull(geometry);
if (geometry.IsEmpty())
{
return;
}
PathFigureCollection figureCollection = geometry.GetPathFigureCollection();
Debug.Assert(figureCollection != null);
PathFigureCollection figures = Figures;
if (figures == null)
{
figures = Figures = new PathFigureCollection();
}
for (int i = 0; i < figureCollection.Count; ++i)
{
figures.Add(figureCollection.Internal_GetItem(i));
}
}
#endregion
#region FigureList class
///<summary>
/// List of figures, populated by callbacks from unmanaged code
///</summary>
internal class FigureList
{
///<summary>
/// Constructor
///</summary>
internal FigureList()
{
_figures = new PathFigureCollection();
}
///<summary>
/// Figures - the array of figures
///</summary>
internal PathFigureCollection Figures
{
get
{
return _figures;
}
}
#endregion FigureList class
///<summary>
/// Callback method, used for adding a figure to the list
///</summary>
///<param name="isFilled">
/// The figure is filled
///</param>
///<param name="isClosed">
/// The figure is closed
///</param>
///<param name="pPoints">
/// The array of the figure's defining points
///</param>
///<param name="pointCount">
/// The size of the points array
///</param>
///<param name="pSegTypes">
/// The array of the figure's defining segment types
///</param>
///<param name="segmentCount">
/// The size of the types array
///</param>
internal unsafe void AddFigureToList(bool isFilled, bool isClosed, MilPoint2F* pPoints, UInt32 pointCount, byte* pSegTypes, UInt32 segmentCount)
{
if (pointCount >=1 && segmentCount >= 1)
{
PathFigure figure = new PathFigure();
figure.IsFilled = isFilled;
figure.StartPoint = new Point(pPoints->X, pPoints->Y);
int pointIndex = 1;
int sameSegCount = 0;
for (int segIndex=0; segIndex<segmentCount; segIndex += sameSegCount)
{
byte segType = (byte)(pSegTypes[segIndex] & (byte)MILCoreSegFlags.SegTypeMask);
sameSegCount = 1;
// Look for a run of same-type segments for a PolyXXXSegment.
while (((segIndex + sameSegCount) < segmentCount) &&
(pSegTypes[segIndex] == pSegTypes[segIndex+sameSegCount]))
{
sameSegCount++;
}
bool fStroked = (pSegTypes[segIndex] & (byte)MILCoreSegFlags.SegIsAGap) == (byte)0;
bool fSmooth = (pSegTypes[segIndex] & (byte)MILCoreSegFlags.SegSmoothJoin) != (byte)0;
if (segType == (byte)MILCoreSegFlags.SegTypeLine)
{
if (pointIndex+sameSegCount > pointCount)
{
throw new System.InvalidOperationException(SR.PathGeometry_InternalReadBackError);
}
if (sameSegCount>1)
{
PointCollection ptCollection = new PointCollection();
for (int i=0; i<sameSegCount; i++)
{
ptCollection.Add(new Point(pPoints[pointIndex+i].X, pPoints[pointIndex+i].Y));
}
ptCollection.Freeze();
PolyLineSegment polySeg = new PolyLineSegment(ptCollection, fStroked, fSmooth);
polySeg.Freeze();
figure.Segments.Add(polySeg);
}
else
{
Debug.Assert(sameSegCount == 1);
figure.Segments.Add(new LineSegment(new Point(pPoints[pointIndex].X, pPoints[pointIndex].Y), fStroked, fSmooth));
}
pointIndex += sameSegCount;
}
else if (segType == (byte)MILCoreSegFlags.SegTypeBezier)
{
int pointBezierCount = sameSegCount*3;
if (pointIndex+pointBezierCount > pointCount)
{
throw new System.InvalidOperationException(SR.PathGeometry_InternalReadBackError);
}
if (sameSegCount>1)
{
PointCollection ptCollection = new PointCollection();
for (int i=0; i<pointBezierCount; i++)
{
ptCollection.Add(new Point(pPoints[pointIndex+i].X, pPoints[pointIndex+i].Y));
}
ptCollection.Freeze();
PolyBezierSegment polySeg = new PolyBezierSegment(ptCollection, fStroked, fSmooth);
polySeg.Freeze();
figure.Segments.Add(polySeg);
}
else
{
Debug.Assert(sameSegCount == 1);
figure.Segments.Add(new BezierSegment(
new Point(pPoints[pointIndex].X, pPoints[pointIndex].Y),
new Point(pPoints[pointIndex+1].X, pPoints[pointIndex+1].Y),
new Point(pPoints[pointIndex+2].X, pPoints[pointIndex+2].Y),
fStroked,
fSmooth));
}
pointIndex += pointBezierCount;
}
else
{
throw new System.InvalidOperationException(SR.PathGeometry_InternalReadBackError);
}
}
if (isClosed)
{
figure.IsClosed = true;
}
figure.Freeze();
Figures.Add(figure);
// Do not bother adding empty figures.
}
}
/// <summary>
/// The array of figures
/// </summary>
internal PathFigureCollection _figures;
};
internal unsafe delegate void AddFigureToListDelegate(bool isFilled, bool isClosed, MilPoint2F *pPoints, UInt32 pointCount, byte *pTypes, UInt32 typeCount);
#region GetPointAtFractionLength
/// <summary>
/// </summary>
public void GetPointAtFractionLength(
double progress,
out Point point,
out Point tangent)
{
if (IsEmpty())
{
point = new Point();
tangent = new Point();
return;
}
unsafe
{
PathGeometryData pathData = GetPathGeometryData();
fixed (byte *pbPathData = pathData.SerializedData)
{
Debug.Assert(pbPathData != (byte*)0);
HRESULT.Check(MilCoreApi.MilUtility_GetPointAtLengthFraction(
&pathData.Matrix,
pathData.FillRule,
pbPathData,
pathData.Size,
progress,
out point,
out tangent));
}
}
}
#endregion
#region Combine
/// <summary>
/// Returns the result of a Boolean combination of two Geometry objects.
/// </summary>
/// <param name="geometry1">The first Geometry object</param>
/// <param name="geometry2">The second Geometry object</param>
/// <param name="mode">The mode in which the objects will be combined</param>
/// <param name="transform">A transformation to apply to the result, or null</param>
/// <param name="tolerance">The computational error tolerance</param>
/// <param name="type">The way the error tolerance will be interpreted - relative or absolute</param>
internal static PathGeometry InternalCombine(
Geometry geometry1,
Geometry geometry2,
GeometryCombineMode mode,
Transform transform,
double tolerance,
ToleranceType type)
{
PathGeometry resultGeometry = null;
unsafe
{
MilMatrix3x2D matrix = CompositionResourceManager.TransformToMilMatrix3x2D(transform);
PathGeometryData data1 = geometry1.GetPathGeometryData();
PathGeometryData data2 = geometry2.GetPathGeometryData();
fixed (byte* pPathData1 = data1.SerializedData)
{
Debug.Assert(pPathData1 != (byte*)0);
fixed (byte* pPathData2 = data2.SerializedData)
{
Debug.Assert(pPathData2 != (byte*)0);
FillRule fillRule = FillRule.Nonzero;
FigureList list = new FigureList();
int hr = UnsafeNativeMethods.MilCoreApi.MilUtility_PathGeometryCombine(
&matrix,
&data1.Matrix,
data1.FillRule,
pPathData1,
data1.Size,
&data2.Matrix,
data2.FillRule,
pPathData2,
data2.Size,
tolerance,
type == ToleranceType.Relative,
new AddFigureToListDelegate(list.AddFigureToList),
mode,
out fillRule);
if (hr == (int)MILErrors.WGXERR_BADNUMBER)
{
// When we encounter NaNs in the renderer, we absorb the error and draw
// nothing. To be consistent, we return an empty geometry.
resultGeometry = new PathGeometry();
}
else
{
HRESULT.Check(hr);
resultGeometry = new PathGeometry(list.Figures, fillRule, null);
}
}
}
}
return resultGeometry;
}
#endregion Combine
/// <summary>
/// Remove all figures
/// </summary>
#region Clear
public void Clear()
{
PathFigureCollection figures = Figures;
if (figures != null)
{
figures.Clear();
}
}
#endregion
#region Bounds
/// <summary>
/// Gets the bounds of this PathGeometry as an axis-aligned bounding box
/// </summary>
public override Rect Bounds
{
get
{
ReadPreamble();
if (IsEmpty())
{
return Rect.Empty;
}
else
{
if ((_flags & PathGeometryInternalFlags.BoundsValid) == 0)
{
// Update the cached bounds
_bounds = GetPathBoundsAsRB(
GetPathGeometryData(),
null, // pen
Matrix.Identity,
StandardFlatteningTolerance,
ToleranceType.Absolute,
false); // Do not skip non-fillable figures
_flags |= PathGeometryInternalFlags.BoundsValid;
}
return _bounds.AsRect;
}
}
}
/// <summary>
/// Gets the bounds of this PathGeometry as an axis-aligned bounding box with pen and/or transform
/// </summary>
internal static Rect GetPathBounds(
PathGeometryData pathData,
Pen pen,
Matrix worldMatrix,
double tolerance,
ToleranceType type,
bool skipHollows)
{
if (pathData.IsEmpty())
{
return Rect.Empty;
}
else
{
MilRectD bounds = PathGeometry.GetPathBoundsAsRB(
pathData,
pen,
worldMatrix,
tolerance,
type,
skipHollows);
return bounds.AsRect;
}
}
/// <summary>
/// Gets the bounds of this PathGeometry as an axis-aligned bounding box with pen and/or transform
///
/// This function should not be called with a PathGeometryData that's known to be empty, since MilRectD
/// does not offer a standard way of representing this.
/// </summary>
internal static MilRectD GetPathBoundsAsRB(
PathGeometryData pathData,
Pen pen,
Matrix worldMatrix,
double tolerance,
ToleranceType type,
bool skipHollows)
{
// This method can't handle the empty geometry case, as it's impossible for us to
// return Rect.Empty. Callers should do their own check.
Debug.Assert(!pathData.IsEmpty());
unsafe
{
MIL_PEN_DATA penData;
double[] dashArray = null;
// If we have a pen, populate the CMD struct
if (pen != null)
{
pen.GetBasicPenData(&penData, out dashArray);
}
MilMatrix3x2D worldMatrix3X2 = CompositionResourceManager.MatrixToMilMatrix3x2D(ref worldMatrix);
fixed (byte *pbPathData = pathData.SerializedData)
{
MilRectD bounds;
Debug.Assert(pbPathData != (byte*)0);
fixed (double *pDashArray = dashArray)
{
int hr = UnsafeNativeMethods.MilCoreApi.MilUtility_PathGeometryBounds(
(pen == null) ? null : &penData,
pDashArray,
&worldMatrix3X2,
pathData.FillRule,
pbPathData,
pathData.Size,
&pathData.Matrix,
tolerance,
type == ToleranceType.Relative,
skipHollows,
&bounds
);
if (hr == (int)MILErrors.WGXERR_BADNUMBER)
{
// When we encounter NaNs in the renderer, we absorb the error and draw
// nothing. To be consistent, we report that the geometry has empty bounds
// (NaN will get transformed into Rect.Empty higher up).
bounds = MilRectD.NaN;
}
else
{
HRESULT.Check(hr);
}
}
return bounds;
}
}
}
#endregion
#region HitTestWithPathGeometry
internal static IntersectionDetail HitTestWithPathGeometry(
Geometry geometry1,
Geometry geometry2,
double tolerance,
ToleranceType type)
{
IntersectionDetail detail = IntersectionDetail.NotCalculated;
unsafe
{
PathGeometryData data1 = geometry1.GetPathGeometryData();
PathGeometryData data2 = geometry2.GetPathGeometryData();
fixed (byte *pbPathData1 = data1.SerializedData)
{
Debug.Assert(pbPathData1 != (byte*)0);
fixed (byte *pbPathData2 = data2.SerializedData)
{
Debug.Assert(pbPathData2 != (byte*)0);
int hr = MilCoreApi.MilUtility_PathGeometryHitTestPathGeometry(
&data1.Matrix,
data1.FillRule,
pbPathData1,
data1.Size,
&data2.Matrix,
data2.FillRule,
pbPathData2,
data2.Size,
tolerance,
type == ToleranceType.Relative,
&detail);
if (hr == (int)MILErrors.WGXERR_BADNUMBER)
{
// When we encounter NaNs in the renderer, we absorb the error and draw
// nothing. To be consistent, we report that the geometry is never hittable.
detail = IntersectionDetail.Empty;
}
else
{
HRESULT.Check(hr);
}
}
}
}
Debug.Assert(detail != IntersectionDetail.NotCalculated);
return detail;
}
#endregion
#region IsEmpty
/// <summary>
/// Returns true if this geometry is empty
/// </summary>
public override bool IsEmpty()
{
PathFigureCollection figures = Figures;
return (figures == null) || (figures.Count <= 0);
}
#endregion
/// <summary>
/// Returns true if this geometry may have curved segments
/// </summary>
public override bool MayHaveCurves()
{
PathFigureCollection figures = Figures;
int count = (figures != null) ? figures.Count : 0;
for (int i=0; i<count; i++)
{
if (figures.Internal_GetItem(i).MayHaveCurves())
{
return true;
}
}
return false;
}
#region Internal
/// <summary>
/// GetAsPathGeometry - return a PathGeometry version of this Geometry
/// </summary>
internal override PathGeometry GetAsPathGeometry()
{
return CloneCurrentValue();
}
/// <summary>
/// Creates a string representation of this object based on the format string
/// and IFormatProvider passed in.
/// If the provider is null, the CurrentCulture is used.
/// See the documentation for IFormattable for more information.
/// </summary>
/// <returns>
/// A string representation of this object.
/// </returns>
internal override string ConvertToString(string format, IFormatProvider provider)
{
PathFigureCollection figures = Figures;
FillRule fillRule = FillRule;
string figuresString = String.Empty;
if (figures != null)
{
figuresString = figures.ConvertToString(format, provider);
}
if (fillRule != FillRule.EvenOdd)
{
return "F1" + figuresString;
}
else
{
return figuresString;
}
}
internal void SetDirty()
{
_flags = PathGeometryInternalFlags.Dirty;
}
/// <summary>
/// GetPathGeometryData - returns a struct which contains this Geometry represented
/// as a path geometry's serialized format.
/// </summary>
internal override PathGeometryData GetPathGeometryData()
{
PathGeometryData data = new PathGeometryData();
data.FillRule = FillRule;
data.Matrix = CompositionResourceManager.TransformToMilMatrix3x2D(Transform);
if (IsObviouslyEmpty())
{
return Geometry.GetEmptyPathGeometryData();
}
ByteStreamGeometryContext ctx = new ByteStreamGeometryContext();
PathFigureCollection figures = Figures;
int figureCount = figures == null ? 0 : figures.Count;
for (int i = 0; i < figureCount; i++)
{
figures.Internal_GetItem(i).SerializeData(ctx);
}
ctx.Close();
data.SerializedData = ctx.GetData();
return data;
}
private void ManualUpdateResource(DUCE.Channel channel, bool skipOnChannelCheck)
{
// If we're told we can skip the channel check, then we must be on channel
Debug.Assert(!skipOnChannelCheck || _duceResource.IsOnChannel(channel));
if (skipOnChannelCheck || _duceResource.IsOnChannel(channel))
{
checked
{
Transform vTransform = Transform;
// Obtain handles for properties that implement DUCE.IResource
DUCE.ResourceHandle hTransform;
if (vTransform == null ||
Object.ReferenceEquals(vTransform, Transform.Identity)
)
{
hTransform = DUCE.ResourceHandle.Null;
}
else
{
hTransform = ((DUCE.IResource)vTransform).GetHandle(channel);
}
DUCE.MILCMD_PATHGEOMETRY data;
data.Type = MILCMD.MilCmdPathGeometry;
data.Handle = _duceResource.GetHandle(channel);
data.hTransform = hTransform;
data.FillRule = FillRule;
PathGeometryData pathData = GetPathGeometryData();
data.FiguresSize = pathData.Size;
unsafe
{
channel.BeginCommand(
(byte*)&data,
sizeof(DUCE.MILCMD_PATHGEOMETRY),
(int)data.FiguresSize
);
fixed (byte *pPathData = pathData.SerializedData)
{
channel.AppendCommandData(pPathData, (int)data.FiguresSize);
}
}
channel.EndCommand();
}
}
}
internal override void TransformPropertyChangedHook(DependencyPropertyChangedEventArgs e)
{
// PathGeometry caches the transformed bounds. We hook the changed event
// on the Transformed bounds so we can clear the cache.
if ((_flags & PathGeometryInternalFlags.BoundsValid) != 0)
{
SetDirty();
// The UCE slave already has a notifier registered on its transform to
// invalidate its cache. No need to call InvalidateResource() here to
// marshal the MIL_PATHGEOMETRY.Flags.
}
}
internal void FiguresPropertyChangedHook(DependencyPropertyChangedEventArgs e)
{
// This is necessary to invalidate the cached bounds.
SetDirty();
}
#endregion
#region Data
internal PathGeometryInternalFlags _flags = PathGeometryInternalFlags.None;
internal MilRectD _bounds; // Cached Bounds
#endregion
}
#endregion
}
|