3 instantiations of LbfgsPoissonRegressionTrainer
Microsoft.ML.StandardTrainers (3)
Standard\PoissonRegression\PoissonRegression.cs (1)
220
() => new
LbfgsPoissonRegressionTrainer
(host, input),
StandardTrainersCatalog.cs (2)
609
return new
LbfgsPoissonRegressionTrainer
(env, labelColumnName, featureColumnName, exampleWeightColumnName, l1Regularization, l2Regularization, optimizationTolerance, historySize, enforceNonNegativity);
629
return new
LbfgsPoissonRegressionTrainer
(env, options);
32 references to LbfgsPoissonRegressionTrainer
Microsoft.ML.AutoML (5)
API\AutoCatalog.cs (2)
538
/// <param name="useLbfgsPoissonRegression">true if use <see cref="
LbfgsPoissonRegressionTrainer
"/> as available trainer.</param>
548
/// <param name="lbfgsPoissonRegressionSearchSpace">if provided, use it as search space for <see cref="
LbfgsPoissonRegressionTrainer
"/>, otherwise the default search space will be used.</param>
API\RegressionExperiment.cs (1)
101
/// See <see cref="
LbfgsPoissonRegressionTrainer
"/>.
SweepableEstimator\Estimators\Lbfgs.cs (1)
31
var option = new
LbfgsPoissonRegressionTrainer
.Options()
TrainerExtensions\RegressionTrainerExtensions.cs (1)
155
var options = TrainerExtensionUtil.CreateOptions<
LbfgsPoissonRegressionTrainer
.Options>(sweepParams, columnInfo.LabelColumnName);
Microsoft.ML.IntegrationTests (2)
Training.cs (2)
365
var
trainer = mlContext.Regression.Trainers.LbfgsPoissonRegression(
366
new
LbfgsPoissonRegressionTrainer
.Options { NumberOfThreads = 1, MaximumNumberOfIterations = 100 });
Microsoft.ML.Samples (3)
Dynamic\Trainers\Regression\LbfgsPoissonRegression.cs (1)
27
var
pipeline = mlContext.Regression.Trainers.
Dynamic\Trainers\Regression\LbfgsPoissonRegressionWithOptions.cs (2)
28
var options = new
LbfgsPoissonRegressionTrainer
.Options
43
var
pipeline =
Microsoft.ML.SearchSpace.Tests (1)
SearchSpaceTest.cs (1)
294
CreateAndVerifyDefaultSearchSpace<
LbfgsPoissonRegressionTrainer
.Options>();
Microsoft.ML.StandardTrainers (19)
Standard\PoissonRegression\PoissonRegression.cs (14)
15
[assembly: LoadableClass(
LbfgsPoissonRegressionTrainer
.Summary, typeof(
LbfgsPoissonRegressionTrainer
), typeof(
LbfgsPoissonRegressionTrainer
.Options),
17
LbfgsPoissonRegressionTrainer
.UserNameValue,
18
LbfgsPoissonRegressionTrainer
.LoadNameValue,
21
LbfgsPoissonRegressionTrainer
.ShortName)]
23
[assembly: LoadableClass(typeof(void), typeof(
LbfgsPoissonRegressionTrainer
), null, typeof(SignatureEntryPointModule),
LbfgsPoissonRegressionTrainer
.LoadNameValue)]
56
/// <seealso cref="StandardTrainersCatalog.LbfgsPoissonRegression(RegressionCatalog.RegressionTrainers,
LbfgsPoissonRegressionTrainer
.Options)"/>
58
public sealed class LbfgsPoissonRegressionTrainer : LbfgsTrainerBase<
LbfgsPoissonRegressionTrainer
.Options, RegressionPredictionTransformer<PoissonRegressionModelParameters>, PoissonRegressionModelParameters>
66
/// Options for the <see cref="
LbfgsPoissonRegressionTrainer
"/> as used in
76
/// Initializes a new instance of <see cref="
LbfgsPoissonRegressionTrainer
"/>
104
/// Initializes a new instance of <see cref="
LbfgsPoissonRegressionTrainer
"/>
131
/// Continues the training of a <see cref="
LbfgsPoissonRegressionTrainer
"/> using an already trained <paramref name="linearModel"/> and returns
StandardTrainersCatalog.cs (5)
580
/// Create <see cref="
LbfgsPoissonRegressionTrainer
"/>, which predicts a target using a linear regression model.
597
public static
LbfgsPoissonRegressionTrainer
LbfgsPoissonRegression(this RegressionCatalog.RegressionTrainers catalog,
613
/// Create <see cref="
LbfgsPoissonRegressionTrainer
"/> using advanced options, which predicts a target using a linear regression model.
623
public static
LbfgsPoissonRegressionTrainer
LbfgsPoissonRegression(this RegressionCatalog.RegressionTrainers catalog,
LbfgsPoissonRegressionTrainer
.Options options)
Microsoft.ML.Tests (2)
FeatureContributionTests.cs (1)
97
new
LbfgsPoissonRegressionTrainer
.Options { NumberOfThreads = 1 }), GetSparseDataset(numberOfInstances: 100), "PoissonRegression");
TrainerEstimators\LbfgsTests.cs (1)
50
var
trainer = ML.Regression.Trainers.LbfgsPoissonRegression();