3 instantiations of SdcaRegressionTrainer
Microsoft.ML.StandardTrainers (3)
Standard\SdcaRegression.cs (1)
222
() => new
SdcaRegressionTrainer
(host, input),
StandardTrainersCatalog.cs (2)
163
return new
SdcaRegressionTrainer
(env, labelColumnName, featureColumnName, exampleWeightColumnName, lossFunction, l2Regularization, l1Regularization, maximumNumberOfIterations);
184
return new
SdcaRegressionTrainer
(env, options);
37 references to SdcaRegressionTrainer
Microsoft.ML.AutoML (4)
API\AutoCatalog.cs (1)
539
/// <param name="useSdca">true if use <see cref="
SdcaRegressionTrainer
"/> as available trainer.</param>
API\RegressionExperiment.cs (1)
106
/// See <see cref="
SdcaRegressionTrainer
"/>.
SweepableEstimator\Estimators\Sdca.cs (1)
13
var option = new
SdcaRegressionTrainer
.Options()
TrainerExtensions\RegressionTrainerExtensions.cs (1)
177
var options = TrainerExtensionUtil.CreateOptions<
SdcaRegressionTrainer
.Options>(sweepParams, columnInfo.LabelColumnName);
Microsoft.ML.IntegrationTests (3)
Debugging.cs (2)
110
new
SdcaRegressionTrainer
.Options { NumberOfThreads = 1, MaximumNumberOfIterations = 20 }));
177
new
SdcaRegressionTrainer
.Options { NumberOfThreads = 1, MaximumNumberOfIterations = 20 }));
ONNX.cs (1)
146
new
SdcaRegressionTrainer
.Options { NumberOfThreads = 1, MaximumNumberOfIterations = 10 }));
Microsoft.ML.Samples (3)
Dynamic\Trainers\Regression\Sdca.cs (1)
27
var
pipeline = mlContext.Regression.Trainers.Sdca(
Dynamic\Trainers\Regression\SdcaWithOptions.cs (2)
28
var options = new
SdcaRegressionTrainer
.Options
44
var
pipeline =
Microsoft.ML.SearchSpace.Tests (1)
SearchSpaceTest.cs (1)
289
CreateAndVerifyDefaultSearchSpace<
SdcaRegressionTrainer
.Options>();
Microsoft.ML.StandardTrainers (20)
Standard\SdcaRegression.cs (15)
16
[assembly: LoadableClass(
SdcaRegressionTrainer
.Summary, typeof(
SdcaRegressionTrainer
), typeof(
SdcaRegressionTrainer
.Options),
18
SdcaRegressionTrainer
.UserNameValue,
19
SdcaRegressionTrainer
.LoadNameValue,
20
SdcaRegressionTrainer
.ShortName)]
52
/// <seealso cref="StandardTrainersCatalog.Sdca(RegressionCatalog.RegressionTrainers,
SdcaRegressionTrainer
.Options)"/>
54
public sealed class SdcaRegressionTrainer : SdcaTrainerBase<
SdcaRegressionTrainer
.Options, RegressionPredictionTransformer<LinearRegressionModelParameters>, LinearRegressionModelParameters>
62
/// Options for the <see cref="
SdcaRegressionTrainer
"/>.
101
/// Initializes a new instance of <see cref="
SdcaRegressionTrainer
"/>
211
Desc =
SdcaRegressionTrainer
.Summary,
212
UserName =
SdcaRegressionTrainer
.UserNameValue,
213
ShortName =
SdcaRegressionTrainer
.ShortName)]
214
public static CommonOutputs.RegressionOutput TrainRegression(IHostEnvironment env,
SdcaRegressionTrainer
.Options input)
221
return TrainerEntryPointsUtils.Train<
SdcaRegressionTrainer
.Options, CommonOutputs.RegressionOutput>(host, input,
StandardTrainersCatalog.cs (5)
136
/// Create <see cref="
SdcaRegressionTrainer
"/>, which predicts a target using a linear regression model.
152
public static
SdcaRegressionTrainer
Sdca(this RegressionCatalog.RegressionTrainers catalog,
167
/// Create <see cref="
SdcaRegressionTrainer
"/> with advanced options, which predicts a target using a linear regression model.
177
public static
SdcaRegressionTrainer
Sdca(this RegressionCatalog.RegressionTrainers catalog,
178
SdcaRegressionTrainer
.Options options)
Microsoft.ML.Tests (6)
FeatureContributionTests.cs (1)
84
new
SdcaRegressionTrainer
.Options { NumberOfThreads = 1, }), GetSparseDataset(numberOfInstances: 100), "SDCARegression");
OnnxConversionTest.cs (2)
79
.Append(mlContext.Regression.Trainers.Sdca(new
SdcaRegressionTrainer
.Options()
575
.Append(mlContext.Regression.Trainers.Sdca(new
SdcaRegressionTrainer
.Options()
Scenarios\RegressionTest.cs (1)
37
var
trainer = context.Regression.Trainers.Sdca(labelColumnName: "Label", featureColumnName: "Features");
TrainerEstimators\SdcaTests.cs (2)
39
var
regressionTrainer = ML.Regression.Trainers.Sdca(
40
new
SdcaRegressionTrainer
.Options { ConvergenceTolerance = 1e-2f, MaximumNumberOfIterations = 10 });