22 references to Recommendation
Microsoft.ML.AutoML (2)
SweepableEstimator\Estimators\MatrixFactorization.cs (1)
11return context.Recommendation().Trainers.MatrixFactorization(param.LabelColumnName, param.MatrixColumnIndexColumnName, param.MatrixRowIndexColumnName, param.ApproximationRank, param.LearningRate, param.NumberOfIterations);
TrainerExtensions\RecommendationTrainerExtensions.cs (1)
22return mlContext.Recommendation().Trainers.MatrixFactorization(options);
Microsoft.ML.AutoML.Samples (1)
AutoFit\RecommendationExperiment.cs (1)
52RegressionMetrics testMetrics = mlContext.Recommendation().Evaluate(testDataViewWithBestScore, labelColumnName: LabelColumnName);
Microsoft.ML.AutoML.Tests (1)
AutoFitTests.cs (1)
556var metrices = mlContext.Recommendation().Evaluate(testDataViewWithBestScore, labelColumnName: labelColumnName, scoreColumnName: scoreColumnName);
Microsoft.ML.IntegrationTests (2)
Evaluation.cs (2)
237var pipeline = mlContext.Recommendation().Trainers.MatrixFactorization( 253var metrics = mlContext.Recommendation().Evaluate(scoredData);
Microsoft.ML.Samples (3)
Dynamic\Trainers\Recommendation\MatrixFactorization.cs (1)
34var pipeline = mlContext.Recommendation().Trainers.
Dynamic\Trainers\Recommendation\MatrixFactorizationWithOptions.cs (1)
60var pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(
Dynamic\Trainers\Recommendation\OneClassMatrixFactorizationWithOptions.cs (1)
66var pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(
Microsoft.ML.Tests (13)
TrainerEstimators\MatrixFactorizationTests.cs (13)
49var est = ML.Recommendation().Trainers.MatrixFactorization(options); 84var pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options); 125var metrices = mlContext.Recommendation().Evaluate(prediction, labelColumnName: labelColumnName, scoreColumnName: scoreColumnName); 228var pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options); 247var metrics = mlContext.Recommendation().Evaluate(prediction, labelColumnName: nameof(MatrixElement.Value), 340var pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options); 359var metrics = mlContext.Recommendation().Evaluate(prediction, labelColumnName: "Value", scoreColumnName: "Score"); 463var pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options); 472var metrics = mlContext.Recommendation().Evaluate(prediction, labelColumnName: "Value", scoreColumnName: "Score"); 607var pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options); 616var metrics = mlContext.Recommendation().Evaluate(prediction, labelColumnName: "Value", scoreColumnName: "Score"); 673var pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options); 787var pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options);