77 references to MatrixFactorizationTrainer
Microsoft.ML.AutoML (12)
TrainerExtensions\RecommendationTrainerExtensions.cs (3)
17
var options = TrainerExtensionUtil.CreateOptions<
MatrixFactorizationTrainer
.Options>(sweepParams);
28
property.Add(nameof(
MatrixFactorizationTrainer
.Options.MatrixColumnIndexColumnName), columnInfo.UserIdColumnName);
29
property.Add(nameof(
MatrixFactorizationTrainer
.Options.MatrixRowIndexColumnName), columnInfo.ItemIdColumnName);
TrainerExtensions\SweepableParams.cs (9)
124
new SweepableDiscreteParam(nameof(
MatrixFactorizationTrainer
.Options.NumberOfIterations), new object[] { 10, 20, 40 }),
125
new SweepableDiscreteParam(nameof(
MatrixFactorizationTrainer
.Options.LearningRate), new object[] { 0.001f, 0.01f, 0.1f }),
126
new SweepableDiscreteParam(nameof(
MatrixFactorizationTrainer
.Options.ApproximationRank), new object[] { 8, 16, 64, 128 }),
127
new SweepableDiscreteParam(nameof(
MatrixFactorizationTrainer
.Options.Lambda), new object[] { 0.01f, 0.05f, 0.1f, 0.5f, 1f }),
128
new SweepableDiscreteParam(nameof(
MatrixFactorizationTrainer
.Options.LossFunction), new object[] {
MatrixFactorizationTrainer
.LossFunctionType.SquareLossRegression,
MatrixFactorizationTrainer
.LossFunctionType.SquareLossOneClass }),
129
new SweepableDiscreteParam(nameof(
MatrixFactorizationTrainer
.Options.Alpha), new object[] { 1f, 0.01f, 0.0001f, 0.000001f }),
130
new SweepableDiscreteParam(nameof(
MatrixFactorizationTrainer
.Options.C), new object[] { 0.000001f, 0.0001f, 0.01f }),
Microsoft.ML.CodeGenerator.Tests (16)
ApprovalTests\ConsoleCodeGeneratorTests.cs (8)
550
{nameof(
MatrixFactorizationTrainer
.Options.NumberOfIterations), 10 },
551
{nameof(
MatrixFactorizationTrainer
.Options.LearningRate), 0.01f },
552
{nameof(
MatrixFactorizationTrainer
.Options.ApproximationRank), 8 },
553
{nameof(
MatrixFactorizationTrainer
.Options.Lambda), 0.01f },
554
{nameof(
MatrixFactorizationTrainer
.Options.LossFunction),
MatrixFactorizationTrainer
.LossFunctionType.SquareLossRegression },
555
{nameof(
MatrixFactorizationTrainer
.Options.Alpha), 1f },
556
{nameof(
MatrixFactorizationTrainer
.Options.C), 0.00001f },
TrainerGeneratorTests.cs (8)
305
{nameof(
MatrixFactorizationTrainer
.Options.NumberOfIterations), 10 },
306
{nameof(
MatrixFactorizationTrainer
.Options.LearningRate), 0.01f },
307
{nameof(
MatrixFactorizationTrainer
.Options.ApproximationRank), 8 },
308
{nameof(
MatrixFactorizationTrainer
.Options.Lambda), 0.01f },
309
{nameof(
MatrixFactorizationTrainer
.Options.LossFunction),
MatrixFactorizationTrainer
.LossFunctionType.SquareLossRegression },
310
{nameof(
MatrixFactorizationTrainer
.Options.Alpha), 1f },
311
{nameof(
MatrixFactorizationTrainer
.Options.C), 0.00001f },
Microsoft.ML.IntegrationTests (2)
Evaluation.cs (2)
237
var
pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(
238
new
MatrixFactorizationTrainer
.Options
Microsoft.ML.Recommender (22)
MatrixFactorizationPredictor.cs (2)
27
/// Model parameters for <see cref="
MatrixFactorizationTrainer
"/>.
440
/// <param name="model">The model trained by one of the training functions in <see cref="
MatrixFactorizationTrainer
"/></param>
MatrixFactorizationTrainer.cs (9)
19
[assembly: LoadableClass(
MatrixFactorizationTrainer
.Summary, typeof(
MatrixFactorizationTrainer
), typeof(
MatrixFactorizationTrainer
.Options),
21
"Matrix Factorization",
MatrixFactorizationTrainer
.LoadNameValue, "libmf", "mf")]
111
/// <seealso cref="Microsoft.ML.RecommendationCatalog.RecommendationTrainers.MatrixFactorization(
MatrixFactorizationTrainer
.Options)"/>
139
/// Options for the <see cref="
MatrixFactorizationTrainer
"/> as used in [MatrixFactorization(Options)](xref:Microsoft.ML.RecommendationCatalog.RecommendationTrainers.MatrixFactorization(Microsoft.ML.Trainers.MatrixFactorizationTrainer.Options)).
340
/// Initializes a new instance of <see cref="
MatrixFactorizationTrainer
"/> through the <see cref="Options"/> class.
378
/// Initializes a new instance of <see cref="
MatrixFactorizationTrainer
"/>.
521
/// Trains a <see cref="
MatrixFactorizationTrainer
"/> using both training and validation data, returns a <see cref="MatrixFactorizationPredictionTransformer"/>.
RecommenderCatalog.cs (11)
46
/// Create <see cref="
MatrixFactorizationTrainer
"/>, which predicts element values in a matrix using matrix factorization.
68
public
MatrixFactorizationTrainer
MatrixFactorization(
72
int approximationRank =
MatrixFactorizationTrainer
.Defaults.ApproximationRank,
73
double learningRate =
MatrixFactorizationTrainer
.Defaults.LearningRate,
74
int numberOfIterations =
MatrixFactorizationTrainer
.Defaults.NumIterations)
79
/// Create <see cref="
MatrixFactorizationTrainer
"/> with advanced options, which predicts element values in a matrix using matrix factorization.
84
/// and the value at the location specified by the two indexes. The training configuration is encoded in <see cref="
MatrixFactorizationTrainer
.Options"/>.
85
/// To invoke one-class matrix factorization, user needs to specify <see cref="
MatrixFactorizationTrainer
.LossFunctionType.SquareLossOneClass"/>.
86
/// The default setting <see cref="
MatrixFactorizationTrainer
.LossFunctionType.SquareLossRegression"/> is for standard matrix factorization problem.
97
public
MatrixFactorizationTrainer
MatrixFactorization(
98
MatrixFactorizationTrainer
.Options options)
Microsoft.ML.Samples (6)
Dynamic\Trainers\Recommendation\MatrixFactorization.cs (1)
34
var
pipeline = mlContext.Recommendation().Trainers.
Dynamic\Trainers\Recommendation\MatrixFactorizationWithOptions.cs (2)
35
var options = new
MatrixFactorizationTrainer
.Options
60
var
pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(
Dynamic\Trainers\Recommendation\OneClassMatrixFactorizationWithOptions.cs (3)
44
var options = new
MatrixFactorizationTrainer
.Options
62
LossFunction =
MatrixFactorizationTrainer
.LossFunctionType
66
var
pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(
Microsoft.ML.Tests (19)
TrainerEstimators\MatrixFactorizationTests.cs (19)
39
var options = new
MatrixFactorizationTrainer
.Options
49
var
est = ML.Recommendation().Trainers.MatrixFactorization(options);
74
var options = new
MatrixFactorizationTrainer
.Options
84
var
pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options);
218
var options = new
MatrixFactorizationTrainer
.Options
228
var
pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options);
329
var options = new
MatrixFactorizationTrainer
.Options
340
var
pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options);
449
var options = new
MatrixFactorizationTrainer
.Options
454
LossFunction =
MatrixFactorizationTrainer
.LossFunctionType.SquareLossOneClass,
463
var
pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options);
593
var options = new
MatrixFactorizationTrainer
.Options
598
LossFunction =
MatrixFactorizationTrainer
.LossFunctionType.SquareLossOneClass,
607
var
pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options);
658
var options = new
MatrixFactorizationTrainer
.Options
670
LossFunction =
MatrixFactorizationTrainer
.LossFunctionType.SquareLossOneClass
673
var
pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options);
776
var options = new
MatrixFactorizationTrainer
.Options
787
var
pipeline = mlContext.Recommendation().Trainers.MatrixFactorization(options);