15 instantiations of OnnxScoringEstimator
Microsoft.ML.OnnxTransformer (15)
OnnxCatalog.cs (15)
41
return new
OnnxScoringEstimator
(env, modelFile, gpuDeviceIdToUse, fallbackToCpuToUse);
69
return new
OnnxScoringEstimator
(env, modelBytes, gpuDeviceIdToUse, fallbackToCpuToUse);
105
return new
OnnxScoringEstimator
(env, modelFile, gpuDeviceIdToUse, fallbackToCpuToUse, shapeDictionary: shapeDictionary);
141
return new
OnnxScoringEstimator
(env, modelBytes, gpuDeviceIdToUse, fallbackToCpuToUse, shapeDictionary: shapeDictionary);
173
return new
OnnxScoringEstimator
(env, new[] { outputColumnName }, new[] { inputColumnName }, modelFile, gpuDeviceIdToUse, fallbackToCpuToUse);
205
return new
OnnxScoringEstimator
(env, new[] { outputColumnName }, new[] { inputColumnName }, modelBytes, gpuDeviceIdToUse, fallbackToCpuToUse);
221
return new
OnnxScoringEstimator
(env, options.OutputColumns, options.InputColumns, options.ModelFile,
259
return new
OnnxScoringEstimator
(env, new[] { outputColumnName }, new[] { inputColumnName },
297
return new
OnnxScoringEstimator
(env, new[] { outputColumnName }, new[] { inputColumnName },
323
return new
OnnxScoringEstimator
(env, outputColumnNames, inputColumnNames, modelFile, gpuDeviceIdToUse, fallbackToCpuToUse);
348
return new
OnnxScoringEstimator
(env, outputColumnNames, inputColumnNames, modelBytes, gpuDeviceIdToUse, fallbackToCpuToUse);
378
return new
OnnxScoringEstimator
(env, outputColumnNames, inputColumnNames, modelFile, gpuDeviceIdToUse, fallbackToCpuToUse, shapeDictionary: shapeDictionary);
408
return new
OnnxScoringEstimator
(env, outputColumnNames, inputColumnNames, modelBytes, gpuDeviceIdToUse, fallbackToCpuToUse, shapeDictionary: shapeDictionary);
440
return new
OnnxScoringEstimator
(env, outputColumnNames, inputColumnNames, modelFile, gpuDeviceIdToUse, fallbackToCpuToUse, shapeDictionary: shapeDictionary, recursionLimit);
472
return new
OnnxScoringEstimator
(env, outputColumnNames, inputColumnNames, modelBytes, gpuDeviceIdToUse, fallbackToCpuToUse, shapeDictionary: shapeDictionary, recursionLimit);
90 references to OnnxScoringEstimator
Microsoft.ML.DnnImageFeaturizer.AlexNet (2)
AlexNetExtension.cs (2)
46
var
prepEstimator = new OnnxScoringEstimator(env, new[] { "PreprocessedInput" }, new[] { "OriginalInput" }, Path.Combine(modelDir, "AlexNetPrepOnnx", "AlexNetPreprocess.onnx"));
47
var
mainEstimator = new OnnxScoringEstimator(env, new[] { "Dropout234_Output_0" }, new[] { "Input140" }, Path.Combine(modelDir, "AlexNetOnnx", "AlexNet.onnx"));
Microsoft.ML.DnnImageFeaturizer.ResNet101 (2)
ResNet101Extension.cs (2)
46
var
prepEstimator = new OnnxScoringEstimator(env, new[] { "PreprocessedInput" }, new[] { "OriginalInput" }, Path.Combine(modelDir, "ResNetPrepOnnx", "ResNetPreprocess.onnx"));
47
var
mainEstimator = new OnnxScoringEstimator(env, new[] { "Pooling2286_Output_0" }, new[] { "Input1600" }, Path.Combine(modelDir, "ResNet101Onnx", "ResNet101.onnx"));
Microsoft.ML.DnnImageFeaturizer.ResNet18 (2)
ResNet18Extension.cs (2)
46
var
prepEstimator = new OnnxScoringEstimator(env, new[] { "PreprocessedInput" }, new[] { "OriginalInput" }, Path.Combine(modelDir, "ResNetPrepOnnx", "ResNetPreprocess.onnx"));
47
var
mainEstimator = new OnnxScoringEstimator(env, new[] { "Pooling395_Output_0" }, new[] { "Input247" }, Path.Combine(modelDir, "ResNet18Onnx", "ResNet18.onnx"));
Microsoft.ML.DnnImageFeaturizer.ResNet50 (2)
ResNet50Extension.cs (2)
46
var
prepEstimator = new OnnxScoringEstimator(env, new[] { "PreprocessedInput" }, new[] { "OriginalInput" }, Path.Combine(modelDir, "ResNetPrepOnnx", "ResNetPreprocess.onnx"));
47
var
mainEstimator = new OnnxScoringEstimator(env, new[] { "Pooling1096_Output_0" }, new[] { "Input750" }, Path.Combine(modelDir, "ResNet50Onnx", "ResNet50.onnx"));
Microsoft.ML.IntegrationTests (3)
ONNX.cs (3)
60
var
onnxEstimator = mlContext.Transforms.ApplyOnnxModel(modelPath, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
106
var
onnxEstimator = mlContext.Transforms.ApplyOnnxModel(modelPath, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
158
var
onnxEstimator = mlContext.Transforms.ApplyOnnxModel(modelPath, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
Microsoft.ML.OnnxTransformer (52)
DnnImageFeaturizerTransform.cs (2)
25
/// a chain of two <see cref="
OnnxScoringEstimator
"/>.
92
/// <see cref="
OnnxScoringEstimator
"/>s (one for preprocessing and one with a pretrained image DNN) with specific models
OnnxCatalog.cs (47)
17
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the input column.
19
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
38
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog, string modelFile, int? gpuDeviceId = null, bool fallbackToCpu = false)
45
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the input column.
47
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
66
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog, Stream modelBytes, int? gpuDeviceId = null, bool fallbackToCpu = false)
73
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the input column.
75
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
98
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog,
109
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the input column.
111
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
134
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog,
145
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the <paramref name="inputColumnName"/> column.
146
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
165
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog,
177
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the <paramref name="inputColumnName"/> column.
178
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
197
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog,
209
/// Create a <see cref="
OnnxScoringEstimator
"/> using the specified <see cref="OnnxOptions"/>.
210
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
217
/// <param name="options">Options for the <see cref="
OnnxScoringEstimator
"/>.</param>
218
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog, OnnxOptions options)
226
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the <paramref name="inputColumnName"/> column.
227
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
250
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog,
264
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the <paramref name="inputColumnName"/> column.
265
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
288
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog,
302
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the <paramref name="inputColumnNames"/> columns.
303
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
315
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog,
327
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the <paramref name="inputColumnNames"/> columns.
328
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
340
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog,
352
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the <paramref name="inputColumnNames"/> columns.
353
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
369
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog,
382
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the <paramref name="inputColumnNames"/> columns.
383
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
399
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog,
412
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the <paramref name="inputColumnNames"/> columns.
413
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
430
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog,
444
/// Create a <see cref="
OnnxScoringEstimator
"/>, which applies a pre-trained Onnx model to the <paramref name="inputColumnNames"/> columns.
445
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
462
public static
OnnxScoringEstimator
ApplyOnnxModel(this TransformsCatalog catalog,
482
/// <see cref="
OnnxScoringEstimator
"/> (one for preprocessing and one with a pretrained image DNN) with specific models
OnnxOptions.cs (1)
10
/// The options for an <see cref="
OnnxScoringEstimator
"/>.
OnnxTransform.cs (2)
38
/// <see cref="ITransformer"/> resulting from fitting an <see cref="
OnnxScoringEstimator
"/>.
39
/// Please refer to <see cref="
OnnxScoringEstimator
"/> to learn more about the necessary dependencies,
Microsoft.ML.OnnxTransformerTest (13)
OnnxTransformTests.cs (13)
156
var
pipe = useOptionsCtor ?
196
var
est = ML.Transforms.ApplyOnnxModel(outputNames, inputNames, modelFile, gpuDeviceId, fallbackToCpu);
369
var
pipeline = ML.Transforms.ApplyOnnxModel("softmaxout_1", "data_0", modelFile, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
408
var
pipeline = ML.Transforms.ApplyOnnxModel("softmaxout_1", "data_0", modelFile, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
436
var
pipeline = ML.Transforms.ApplyOnnxModel(new[] { "outa", "outb" }, new[] { "ina", "inb" }, modelFile, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
476
var
pipeline = ML.Transforms.ApplyOnnxModel(new[] { "outb", "outa" }, new[] { "ina", "inb" }, modelFile, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
536
var
pipeline = ML.Transforms.ApplyOnnxModel(modelFile, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
562
var
pipeline = ML.Transforms.ApplyOnnxModel(modelFile, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
694
var
pipeline = ML.Transforms.ApplyOnnxModel(new[] { "output" }, new[] { "input" }, modelFile, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
747
var
pipeline = ML.Transforms.ApplyOnnxModel(new[] { "output" }, new[] { "input" }, modelFile, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
902
var pipeline = new
OnnxScoringEstimator
[3];
972
var
pipeline = ML.Transforms.ApplyOnnxModel(new[] { "outa", "outb" }, new[] { "ina", "inb" },
1072
var
pipeline = ML.Transforms.ApplyOnnxModel(nameof(PredictionWithCustomShape.argmax),
Microsoft.ML.Samples (2)
Dynamic\ModelOperations\OnnxConversion.cs (1)
84
var
onnxEstimator = mlContext.Transforms.ApplyOnnxModel(onnxModelPath);
Dynamic\Transforms\ApplyOnnxModel.cs (1)
28
var
pipeline = mlContext.Transforms.ApplyOnnxModel(modelPath);
Microsoft.ML.Tests (12)
OnnxConversionTest.cs (10)
62
/// call <see cref="
OnnxScoringEstimator
"/> to evaluate that file. The outputs of <see cref="
OnnxScoringEstimator
"/> are checked against the original
826
var
onnxEstimator = mlContext.Transforms.ApplyOnnxModel(onnxModelPath, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
988
var
onnxEstimator = mlContext.Transforms.ApplyOnnxModel(onnxModelPath, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
1515
var
onnxEstimator = mlContext.Transforms.ApplyOnnxModel(onnxFilePath, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
1632
var
onnxEstimator = mlContext.Transforms.ApplyOnnxModel(outputNames, inputNames, onnxModelPath, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
1743
var
pipeline = mlContext.Transforms.ApplyOnnxModel(onnxModelPath);
1806
var
onnxEstimator = mlContext.Transforms.ApplyOnnxModel(outputNames, inputNames, onnxModelPath, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
1819
var
onnxEstimator2 = mlContext.Transforms.ApplyOnnxModel(outputNames, inputNames, onnxModelPath2, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
2254
var
onnxEstimator = ML.Transforms.ApplyOnnxModel(onnxModelPath, gpuDeviceId: _gpuDeviceId, fallbackToCpu: _fallbackToCpu);
OnnxSequenceTypeWithAttributesTest.cs (2)
46
var
pipeline = ctx.Transforms.ApplyOnnxModel(
85
var
pipeline = ctx.Transforms.ApplyOnnxModel(