3 instantiations of SymbolicSgdLogisticRegressionBinaryTrainer
Microsoft.ML.Mkl.Components (3)
MklComponentsCatalog.cs (2)
103
return new
SymbolicSgdLogisticRegressionBinaryTrainer
(env, options);
127
return new
SymbolicSgdLogisticRegressionBinaryTrainer
(env, options);
SymSgdClassificationTrainer.cs (1)
294
() => new
SymbolicSgdLogisticRegressionBinaryTrainer
(host, options),
43 references to SymbolicSgdLogisticRegressionBinaryTrainer
Microsoft.ML.AutoML (3)
TrainerExtensions\BinaryTrainerExtensions.cs (1)
225
var options = TrainerExtensionUtil.CreateOptions<
SymbolicSgdLogisticRegressionBinaryTrainer
.Options>(sweepParams, columnInfo.LabelColumnName);
TrainerExtensions\MultiTrainerExtensions.cs (2)
180
var
binaryTrainer = _binaryLearnerCatalogItem.CreateInstance(mlContext, sweepParams, columnInfo) as
SymbolicSgdLogisticRegressionBinaryTrainer
;
Microsoft.ML.Core.Tests (1)
UnitTests\TestEntryPoints.cs (1)
330
Env.ComponentCatalog.RegisterAssembly(typeof(
SymbolicSgdLogisticRegressionBinaryTrainer
).Assembly);
Microsoft.ML.IntegrationTests (2)
Training.cs (2)
409
var
trainer = mlContext.BinaryClassification.Trainers.SymbolicSgdLogisticRegression(
410
new
SymbolicSgdLogisticRegressionBinaryTrainer
.Options
Microsoft.ML.Mkl.Components (27)
MklComponentsCatalog.cs (10)
74
/// Create <see cref="
SymbolicSgdLogisticRegressionBinaryTrainer
"/>, which predicts a target using a linear binary classification model trained over boolean label data.
76
/// The <see cref="
SymbolicSgdLogisticRegressionBinaryTrainer
"/> parallelizes SGD using <a href="https://www.microsoft.com/en-us/research/project/project-parade/#!symbolic-execution">symbolic execution</a>.
89
public static
SymbolicSgdLogisticRegressionBinaryTrainer
SymbolicSgdLogisticRegression(this BinaryClassificationCatalog.BinaryClassificationTrainers catalog,
92
int numberOfIterations =
SymbolicSgdLogisticRegressionBinaryTrainer
.Defaults.NumberOfIterations)
97
var options = new
SymbolicSgdLogisticRegressionBinaryTrainer
.Options
107
/// Create <see cref= "
SymbolicSgdLogisticRegressionBinaryTrainer
" /> with advanced options, which predicts a target using a linear binary classification model trained over boolean label data.
109
/// The <see cref="
SymbolicSgdLogisticRegressionBinaryTrainer
"/> parallelizes SGD using <a href="https://www.microsoft.com/en-us/research/project/project-parade/#!symbolic-execution">symbolic execution</a>.
112
/// <param name="options">Algorithm advanced options. See <see cref="
SymbolicSgdLogisticRegressionBinaryTrainer
.Options"/>.</param>
120
public static
SymbolicSgdLogisticRegressionBinaryTrainer
SymbolicSgdLogisticRegression(
122
SymbolicSgdLogisticRegressionBinaryTrainer
.Options options)
SymSgdClassificationTrainer.cs (17)
22
[assembly: LoadableClass(typeof(
SymbolicSgdLogisticRegressionBinaryTrainer
), typeof(
SymbolicSgdLogisticRegressionBinaryTrainer
.Options),
24
SymbolicSgdLogisticRegressionBinaryTrainer
.UserNameValue,
25
SymbolicSgdLogisticRegressionBinaryTrainer
.LoadNameValue,
26
SymbolicSgdLogisticRegressionBinaryTrainer
.ShortName)]
28
[assembly: LoadableClass(typeof(void), typeof(
SymbolicSgdLogisticRegressionBinaryTrainer
), null, typeof(SignatureEntryPointModule),
SymbolicSgdLogisticRegressionBinaryTrainer
.LoadNameValue)]
70
/// <seealso cref="Microsoft.ML.MklComponentsCatalog.SymbolicSgdLogisticRegression(Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers,Microsoft.ML.Trainers.
SymbolicSgdLogisticRegressionBinaryTrainer
.Options)"/>
79
/// Options for the <see cref="
SymbolicSgdLogisticRegressionBinaryTrainer
"/> as used in
238
/// Initializes a new instance of <see cref="
SymbolicSgdLogisticRegressionBinaryTrainer
"/>
266
/// Continues the training of <see cref="
SymbolicSgdLogisticRegressionBinaryTrainer
"/> using an already trained <paramref name="modelParameters"/>
284
UserName =
SymbolicSgdLogisticRegressionBinaryTrainer
.UserNameValue,
285
ShortName =
SymbolicSgdLogisticRegressionBinaryTrainer
.ShortName)]
367
private readonly
SymbolicSgdLogisticRegressionBinaryTrainer
_trainer;
379
public ArrayManager(
SymbolicSgdLogisticRegressionBinaryTrainer
trainer, IChannel ch)
543
private readonly
SymbolicSgdLogisticRegressionBinaryTrainer
_trainer;
554
public InputDataManager(
SymbolicSgdLogisticRegressionBinaryTrainer
trainer, FloatLabelCursor.Factory cursorFactory, IChannel ch)
Microsoft.ML.Predictor.Tests (1)
TestPredictors.cs (1)
46
environment.ComponentCatalog.RegisterAssembly(typeof(
SymbolicSgdLogisticRegressionBinaryTrainer
).Assembly);
Microsoft.ML.Samples (3)
Dynamic\Trainers\BinaryClassification\SymbolicSgdLogisticRegression.cs (1)
30
var
pipeline = mlContext.BinaryClassification.Trainers
Dynamic\Trainers\BinaryClassification\SymbolicSgdLogisticRegressionWithOptions.cs (2)
31
var options = new
SymbolicSgdLogisticRegressionBinaryTrainer
.Options()
39
var
pipeline = mlContext.BinaryClassification.Trainers
Microsoft.ML.Tests (6)
FeatureContributionTests.cs (1)
178
new
SymbolicSgdLogisticRegressionBinaryTrainer
.Options()
Scenarios\Api\Estimators\SimpleTrainAndPredict.cs (1)
68
.Append(ml.BinaryClassification.Trainers.SymbolicSgdLogisticRegression(new
SymbolicSgdLogisticRegressionBinaryTrainer
.Options
TrainerEstimators\SymSgdClassificationTests.cs (4)
20
var
trainer = new SymbolicSgdLogisticRegressionBinaryTrainer(Env, new
SymbolicSgdLogisticRegressionBinaryTrainer
.Options());
39
var withInitPredictor = new SymbolicSgdLogisticRegressionBinaryTrainer(Env, new
SymbolicSgdLogisticRegressionBinaryTrainer
.Options()).Fit(transformedData,
43
var notInitPredictor = new SymbolicSgdLogisticRegressionBinaryTrainer(Env, new
SymbolicSgdLogisticRegressionBinaryTrainer
.Options()).Fit(transformedData);