62 references to NumQueries
Microsoft.ML.FastTree (62)
Dataset\Dataset.cs (2)
157
if (
NumQueries
== 0)
160
_maxDocsPerQuery = Enumerable.Range(0,
NumQueries
).Select(NumDocsInQuery).Max();
FastTree.cs (1)
433
set.NumDocs, set.
NumQueries
, set.NumFeatures, datasetSize / 1024 / 1024, (datasetSize - skeletonSize) / 1024 / 1024);
FastTreeRanking.cs (7)
578
TrainQueriesTopLabels = new short[Dataset.
NumQueries
][];
579
for (int q = 0; q < Dataset.
NumQueries
; ++q)
582
_labelCounts = new int[Dataset.
NumQueries
][];
584
for (int q = 0; q < Dataset.
NumQueries
; ++q)
592
_inverseMaxDcgt = new double[Dataset.
NumQueries
];
593
for (int q = 0; q < Dataset.
NumQueries
; ++q)
599
for (int q = 0; q < Dataset.
NumQueries
; ++q)
Training\Applications\ObjectiveFunction.cs (3)
63
var actions = new Action[(int)Math.Ceiling((double)Dataset.
NumQueries
/ QueryThreadChunkSize)];
67
for (int q = 0; q < Dataset.
NumQueries
; q += QueryThreadChunkSize)
74
GetGradientChunk(start, start + Math.Min(QueryThreadChunkSize, Dataset.
NumQueries
- start), GradSamplingRate, sampleIndex, threadIndex);
Training\BaggingProvider.cs (7)
35
for (int i = 0; i < CompleteTrainingSet.
NumQueries
; i++)
104
int[] tmpTrainQueryIndices = new int[CompleteTrainingSet.
NumQueries
];
105
bool[] selectedTrainQueries = new bool[CompleteTrainingSet.
NumQueries
];
108
for (int i = 0; i < CompleteTrainingSet.
NumQueries
; i++)
126
int outOfBagQueriesCount = CompleteTrainingSet.
NumQueries
- qIdx;
128
var currentTrainQueryIndices = new int[CompleteTrainingSet.
NumQueries
- outOfBagQueriesCount];
133
for (int q = 0; q < CompleteTrainingSet.
NumQueries
; q++)
Training\DcgCalculator.cs (19)
166
Parallel.ForEach(Enumerable.Range(0, dataset.
NumQueries
).Where(query => maxDCG3[query] > 0),
174
return _result / dataset.
NumQueries
;
267
Parallel.ForEach(Enumerable.Range(0, dataset.
NumQueries
).Where(query => maxDCG1[query] > 0),
275
return _result / dataset.
NumQueries
;
285
for (int query = 0; query < dataset.
NumQueries
; ++query)
296
return result / dataset.
NumQueries
;
306
for (int query = 0; query < dataset.
NumQueries
; ++query)
313
return result * DiscountMap[0] / dataset.
NumQueries
;
368
int chunkSize = 1 + dataset.
NumQueries
/ BlockingThreadPool.NumThreads; // Minimizes the number of repeat computations in sparse array to have each thread take as big a chunk as possible
371
var actions = new Action[(int)Math.Ceiling(1.0 * dataset.
NumQueries
/ chunkSize)];
373
for (int q = 0; q < dataset.
NumQueries
; q += chunkSize)
379
NdcgRangeWorkerChunkFromScores(dataset, labels, scores, result, start, Math.Min(dataset.
NumQueries
- start, chunkSize), threadIndex);
387
result[t] /= dataset.
NumQueries
;
474
double[] result = new double[dataset.
NumQueries
];
477
for (int q = 0; q < dataset.
NumQueries
; ++q)
507
int chunkSize = 1 + dataset.
NumQueries
/ BlockingThreadPool.NumThreads; // Minimizes the number of repeat computations in sparse array to have each thread take as big a chunk as possible
510
var actions = new Action[(int)Math.Ceiling(1.0 * dataset.
NumQueries
/ chunkSize)];
512
for (int q = 0; q < dataset.
NumQueries
; q += chunkSize)
518
OrderingRangeWorkerFromScores(dataset, scores, result, start, Math.Min(dataset.
NumQueries
- start, chunkSize), threadIndex);
Training\Test.cs (18)
359
result.Add(new TestResult("NDCG@" + (i + 1).ToString(), ndcg[i] * Dataset.
NumQueries
, Dataset.
NumQueries
, false, TestResult.ValueOperator.Average));
411
new TestResult("NDCG@" + NdcgTruncation.ToString(), fastNdcg * Dataset.
NumQueries
, Dataset.
NumQueries
, false, TestResult.ValueOperator.Average),
454
new TestResult("NDCG@" + NdcgTruncation.ToString(), fastNdcg * Dataset.
NumQueries
, Dataset.
NumQueries
, false, TestResult.ValueOperator.Average),
486
new TestResult("Surplus@100", surplus[0] * _scaleFactor * Dataset.
NumQueries
, Dataset.
NumQueries
, false, TestResult.ValueOperator.Average),
487
new TestResult("Surplus@200", surplus[1] * _scaleFactor * Dataset.
NumQueries
, Dataset.
NumQueries
, false, TestResult.ValueOperator.Average),
488
new TestResult("Surplus@300", surplus[2] * _scaleFactor * Dataset.
NumQueries
, Dataset.
NumQueries
, false, TestResult.ValueOperator.Average),
489
new TestResult("Surplus@400", surplus[3] * _scaleFactor * Dataset.
NumQueries
, Dataset.
NumQueries
, false, TestResult.ValueOperator.Average),
490
new TestResult("Surplus@500", surplus[4] * _scaleFactor * Dataset.
NumQueries
, Dataset.
NumQueries
, false, TestResult.ValueOperator.Average),
491
new TestResult("Surplus@1000", surplus[5] * _scaleFactor * Dataset.
NumQueries
, Dataset.
NumQueries
, false, TestResult.ValueOperator.Average),
Training\WinLossCalculator.cs (5)
50
int chunkSize = 1 + dataset.
NumQueries
/ BlockingThreadPool.NumThreads; // Minimizes the number of repeat computations in sparse array to have each thread take as big a chunk as possible
53
var actions = new Action[(int)Math.Ceiling(1.0 * dataset.
NumQueries
/ chunkSize)];
56
for (int q = 0; q < dataset.
NumQueries
; q += chunkSize)
61
WinLossRangeWorkerChunkFromScores(dataset, labels, scores, result, start, Math.Min(dataset.
NumQueries
- start, chunkSize), threadIndex));
66
result[t] /= dataset.
NumQueries
;