2 instantiations of TrainTestData
Microsoft.ML.Data (2)
DataLoadSave\DataOperationsCatalog.cs (2)
437
return new
TrainTestData
(trainDV, testDV);
503
yield return new
TrainTestData
(trainDV, testDV);
66 references to TrainTestData
Microsoft.ML.AutoML (11)
API\AutoMLExperimentExtension.cs (4)
48
/// Set train and validation dataset for <see cref="AutoMLExperiment"/>. This will make <see cref="AutoMLExperiment"/> uses <see cref="
TrainTestData
.TrainSet"/> from <paramref name="trainValidationSplit"/>
49
/// to train a model, and use <see cref="
TrainTestData
.TestSet"/> from <paramref name="trainValidationSplit"/> to evaluate the model.
52
/// <param name="trainValidationSplit">a <see cref="
TrainTestData
"/> for train and validation.</param>
54
public static AutoMLExperiment SetDataset(this AutoMLExperiment experiment,
TrainTestData
trainValidationSplit)
API\BinaryClassificationExperiment.cs (1)
183
var
splitData = Context.Data.TrainTestSplit(trainData);
API\MulticlassClassificationExperiment.cs (1)
167
var
splitData = Context.Data.TrainTestSplit(trainData);
API\RegressionExperiment.cs (1)
189
var
splitData = Context.Data.TrainTestSplit(trainData);
AutoMLExperiment\Runner\SweepablePipelineRunner.cs (1)
46
foreach (
var
split in datasetSplit)
Tuner\SmacTuner.cs (1)
147
var
trainTestSplit = _context.Data.TrainTestSplit(data);
Utils\SplitUtil.cs (2)
21
foreach (
var
split in splits)
53
var
splitData = context.Data.TrainTestSplit(trainData, samplingKeyColumnName: samplingKeyColumn);
Microsoft.ML.AutoML.Samples (2)
AutoMLExperiment.cs (1)
26
var
trainTestSplit = context.Data.TrainTestSplit(dataView);
Sweepable\SweepableLightGBMBinaryExperiment.cs (1)
39
var
trainTestSplit = context.Data.TrainTestSplit(dataView, testFraction: 0.1);
Microsoft.ML.AutoML.Tests (4)
AutoFitTests.cs (4)
102
var
dataTrainTest = context.Data.TrainTestSplit(trainData);
161
var
trainTestSplit = context.Data.TrainTestSplit(dataset);
338
TrainTestData
trainTestData = context.Data.TrainTestSplit(trainData, testFraction: 0.2, seed: 1);
589
var
dataTrainTest = context.Data.TrainTestSplit(dataFull);
Microsoft.ML.Data (6)
DataLoadSave\DataOperationsCatalog.cs (5)
411
public
TrainTestData
TrainTestSplit(IDataView data, double testFraction = 0.1, string samplingKeyColumnName = null, int? seed = null)
458
public IReadOnlyList<
TrainTestData
> CrossValidationSplit(IDataView data, int numberOfFolds = 5, string samplingKeyColumnName = null, int? seed = null)
464
var result = new List<
TrainTestData
>();
465
foreach (
var
split in CrossValidationSplit(_env, data, splitColumn, numberOfFolds))
474
internal static IEnumerable<
TrainTestData
> CrossValidationSplit(IHostEnvironment env, IDataView data, string splitColumn, int numberOfFolds = 5)
TrainCatalog.cs (1)
103
foreach (
var
split in DataOperationsCatalog.CrossValidationSplit(Environment, data, splitColumn, numFolds))
Microsoft.ML.Fairlearn.Tests (1)
GridSearchTest.cs (1)
94
var
trainTestSplit = context.Data.TrainTestSplit(shuffledDataset, 0.2);
Microsoft.ML.IntegrationTests (2)
Training.cs (1)
36
var
trainTestSplit = mlContext.Data.TrainTestSplit(data);
Validation.cs (1)
107
var
dataSplit = mlContext.Data.TrainTestSplit(data, testFraction: 0.2);
Microsoft.ML.PerformanceTests (1)
ImageClassificationBench.cs (1)
69
TrainTestData
trainTestData = _mlContext.Data.TrainTestSplit(
Microsoft.ML.Samples (17)
Dynamic\DataOperations\TrainTestSplit.cs (1)
30
var
split = mlContext.Data
Dynamic\ModelOperations\OnnxConversion.cs (1)
45
var
trainTestOriginalData = mlContext.Data
Dynamic\Trainers\BinaryClassification\Calibrators\FixedPlatt.cs (1)
23
var
trainTestData = mlContext.Data
Dynamic\Trainers\BinaryClassification\Calibrators\Isotonic.cs (1)
23
var
trainTestData = mlContext.Data
Dynamic\Trainers\BinaryClassification\Calibrators\Naive.cs (1)
23
var
trainTestData = mlContext.Data
Dynamic\Trainers\BinaryClassification\Calibrators\Platt.cs (1)
23
var
trainTestData = mlContext.Data
Dynamic\Trainers\BinaryClassification\Gam.cs (1)
27
var
dataSets = mlContext.Data.TrainTestSplit(data);
Dynamic\Trainers\BinaryClassification\GamWithOptions.cs (1)
28
var
dataSets = mlContext.Data.TrainTestSplit(data);
Dynamic\Trainers\MulticlassClassification\ImageClassification\ImageClassificationDefault.cs (1)
58
TrainTestData
trainTestData = mlContext.Data.TrainTestSplit(
Dynamic\Trainers\MulticlassClassification\ImageClassification\ResnetV2101TransferLearningEarlyStopping.cs (1)
57
TrainTestData
trainTestData = mlContext.Data.TrainTestSplit(
Dynamic\Trainers\MulticlassClassification\ImageClassification\ResnetV2101TransferLearningTrainTestSplit.cs (1)
57
TrainTestData
trainTestData = mlContext.Data.TrainTestSplit(
Dynamic\Trainers\Regression\GamAdvanced.cs (1)
27
var
dataSets = mlContext.Data.TrainTestSplit(data);
Dynamic\Trainers\Regression\GamWithOptionsAdvanced.cs (1)
28
var
dataSets = mlContext.Data.TrainTestSplit(data);
Dynamic\Trainers\Regression\LightGbmAdvanced.cs (1)
30
var
split = mlContext.Data.TrainTestSplit(dataView, testFraction: 0.1);
Dynamic\Trainers\Regression\LightGbmWithOptionsAdvanced.cs (1)
30
var
split = mlContext.Data.TrainTestSplit(dataView, testFraction: 0.1);
Dynamic\Trainers\Regression\OrdinaryLeastSquaresAdvanced.cs (1)
49
var
split = mlContext.Data.TrainTestSplit(dataView, testFraction: 0.2);
Dynamic\Trainers\Regression\OrdinaryLeastSquaresWithOptionsAdvanced.cs (1)
49
var
split = mlContext.Data.TrainTestSplit(dataView, testFraction: 0.2);
Microsoft.ML.Samples.GPU (3)
docs\samples\Microsoft.ML.Samples\Dynamic\Trainers\MulticlassClassification\ImageClassification\ImageClassificationDefault.cs (1)
58
TrainTestData
trainTestData = mlContext.Data.TrainTestSplit(
docs\samples\Microsoft.ML.Samples\Dynamic\Trainers\MulticlassClassification\ImageClassification\ResnetV2101TransferLearningEarlyStopping.cs (1)
57
TrainTestData
trainTestData = mlContext.Data.TrainTestSplit(
docs\samples\Microsoft.ML.Samples\Dynamic\Trainers\MulticlassClassification\ImageClassification\ResnetV2101TransferLearningTrainTestSplit.cs (1)
57
TrainTestData
trainTestData = mlContext.Data.TrainTestSplit(
Microsoft.ML.TensorFlow.Tests (5)
TensorflowTests.cs (5)
1412
TrainTestData
trainTestData = _mlContext.Data.TrainTestSplit(
1487
TrainTestData
trainTestData = _mlContext.Data.TrainTestSplit(
1619
TrainTestData
trainTestData = _mlContext.Data.TrainTestSplit(
1774
TrainTestData
trainTestData = _mlContext.Data.TrainTestSplit(
1864
TrainTestData
trainTestData = _mlContext.Data.TrainTestSplit(
Microsoft.ML.Tests (11)
Scenarios\Api\CookbookSamples\CookbookSamplesDynamicApi.cs (1)
655
var
split = mlContext.Data.TrainTestSplit(data, testFraction: 0.1);
Scenarios\Api\TestApi.cs (8)
308
var
ttSplit = mlContext.Data.TrainTestSplit(fullInput);
309
var
ttSplitWithSeed = mlContext.Data.TrainTestSplit(fullInput, seed: 10);
310
var
ttSplitWithSeedAndSamplingKey = mlContext.Data.TrainTestSplit(fullInput, seed: 10, samplingKeyColumnName: "Workclass");
364
var
simpleSplit = mlContext.Data.TrainTestSplit(input);
365
var
splitWithSeed = mlContext.Data.TrainTestSplit(input, seed: 10);
377
var
stratSplit = mlContext.Data.TrainTestSplit(input, samplingKeyColumnName: "Workclass");
389
var
stratSeed = mlContext.Data.TrainTestSplit(input, samplingKeyColumnName: "Workclass", seed: 1000000);
456
var
split = mlContext.Data.TrainTestSplit(input, 0.5, nameof(Input.TextStrat));
Scenarios\RegressionTest.cs (1)
23
var
splitData = context.Data.TrainTestSplit(taxiData, testFraction: 0.1);
TrainerEstimators\TreeEnsembleFeaturizerTest.cs (1)
799
var
split = ML.Data.TrainTestSplit(dataView, 0.5);
Microsoft.ML.TorchSharp.Tests (3)
NerTests.cs (1)
217
var
trainTest = ML.Data.TrainTestSplit(dataView);
TextClassificationTests.cs (2)
175
var
trainTestSplit = mlContext.Data.TrainTestSplit(df, testFraction: 0.2);
432
var
dataSplit = ML.Data.TrainTestSplit(dataView, testFraction: 0.2);