1 write to TrainSet
Microsoft.ML.Data (1)
DataLoadSave\DataOperationsCatalog.cs (1)
42TrainSet = trainSet;
74 references to TrainSet
Microsoft.ML.AutoML (10)
API\AutoMLExperimentExtension.cs (2)
48/// Set train and validation dataset for <see cref="AutoMLExperiment"/>. This will make <see cref="AutoMLExperiment"/> uses <see cref="TrainTestData.TrainSet"/> from <paramref name="trainValidationSplit"/> 56return experiment.SetDataset(trainValidationSplit.TrainSet, trainValidationSplit.TestSet);
API\BinaryClassificationExperiment.cs (1)
184_experiment.SetDataset(splitData.TrainSet, splitData.TestSet);
API\MulticlassClassificationExperiment.cs (1)
168return Execute(splitData.TrainSet, splitData.TestSet, columnInformation, preFeaturizer, progressHandler);
API\RegressionExperiment.cs (1)
190return Execute(splitData.TrainSet, splitData.TestSet, columnInformation, preFeaturizer, progressHandler);
AutoMLExperiment\Runner\SweepablePipelineRunner.cs (1)
52var model = mlnetPipeline.Fit(split.TrainSet);
Tuner\SmacTuner.cs (1)
148var model = trainer.Fit(trainTestSplit.TrainSet);
Utils\SplitUtil.cs (3)
23if (DatasetDimensionsUtil.IsDataViewEmpty(split.TrainSet) || 29var trainDataset = DropAllColumnsExcept(context, split.TrainSet, originalColumnNames); 54trainData = DropAllColumnsExcept(context, splitData.TrainSet, originalColumnNames);
Microsoft.ML.AutoML.Samples (2)
AutoMLExperiment.cs (1)
46.SetDataset(trainTestSplit.TrainSet, fold: 5) // use 5-fold cross validation to evaluate each trial
Sweepable\SweepableLightGBMBinaryExperiment.cs (1)
72.SetDataset(trainTestSplit.TrainSet, fold: 5) // use 5-fold cross validation to evaluate each trial
Microsoft.ML.AutoML.Tests (7)
AutoFitTests.cs (7)
114.Execute(dataTrainTest.TrainSet, dataTrainTest.TestSet, DatasetUtil.UciAdultLabel); 173.Execute(trainTestSplit.TrainSet, trainTestSplit.TestSet, label); 339IDataView trainDataset = SplitUtil.DropAllColumnsExcept(context, trainTestData.TrainSet, originalColumnNames); 609.Execute(dataTrainTest.TrainSet, 616.Execute(dataCV.First().TrainSet, 626var resTrainTest = model.Transform(dataTrainTest.TrainSet); 627var resCV = model.Transform(dataCV.First().TrainSet);
Microsoft.ML.Data (1)
TrainCatalog.cs (1)
105var model = estimator.Fit(split.TrainSet);
Microsoft.ML.IntegrationTests (2)
Training.cs (1)
37var trainData = trainTestSplit.TrainSet;
Validation.cs (1)
108var trainData = dataSplit.TrainSet;
Microsoft.ML.PerformanceTests (1)
ImageClassificationBench.cs (1)
72_trainDataset = trainTestData.TrainSet;
Microsoft.ML.Samples (25)
Dynamic\DataOperations\CrossValidationSplit.cs (6)
35.CreateEnumerable<DataPoint>(folds[0].TrainSet, 59.CreateEnumerable<DataPoint>(folds[1].TrainSet, 82.CreateEnumerable<DataPoint>(folds[2].TrainSet, 107.CreateEnumerable<DataPoint>(folds[0].TrainSet, 130.CreateEnumerable<DataPoint>(folds[1].TrainSet, 153.CreateEnumerable<DataPoint>(folds[2].TrainSet,
Dynamic\DataOperations\TrainTestSplit.cs (2)
35.CreateEnumerable<DataPoint>(split.TrainSet, reuseRowObject: false); 59.CreateEnumerable<DataPoint>(split.TrainSet, reuseRowObject: false);
Dynamic\ModelOperations\OnnxConversion.cs (2)
67var transformer = wholePipeline.Fit(trainTestOriginalData.TrainSet); 86using var onnxTransformer = onnxEstimator.Fit(trainTestOriginalData.TrainSet);
Dynamic\Trainers\BinaryClassification\Calibrators\FixedPlatt.cs (1)
33var transformer = pipeline.Fit(trainTestData.TrainSet);
Dynamic\Trainers\BinaryClassification\Calibrators\Isotonic.cs (1)
33var transformer = pipeline.Fit(trainTestData.TrainSet);
Dynamic\Trainers\BinaryClassification\Calibrators\Naive.cs (1)
33var transformer = pipeline.Fit(trainTestData.TrainSet);
Dynamic\Trainers\BinaryClassification\Calibrators\Platt.cs (1)
33var transformer = pipeline.Fit(trainTestData.TrainSet);
Dynamic\Trainers\BinaryClassification\Gam.cs (1)
28var trainSet = dataSets.TrainSet;
Dynamic\Trainers\BinaryClassification\GamWithOptions.cs (1)
29var trainSet = dataSets.TrainSet;
Dynamic\Trainers\MulticlassClassification\ImageClassification\ImageClassificationDefault.cs (1)
61IDataView trainDataset = trainTestData.TrainSet;
Dynamic\Trainers\MulticlassClassification\ImageClassification\ResnetV2101TransferLearningEarlyStopping.cs (1)
60IDataView trainDataset = trainTestData.TrainSet;
Dynamic\Trainers\MulticlassClassification\ImageClassification\ResnetV2101TransferLearningTrainTestSplit.cs (1)
60IDataView trainDataset = trainTestData.TrainSet;
Dynamic\Trainers\Regression\GamAdvanced.cs (1)
28var trainSet = dataSets.TrainSet;
Dynamic\Trainers\Regression\GamWithOptionsAdvanced.cs (1)
29var trainSet = dataSets.TrainSet;
Dynamic\Trainers\Regression\LightGbmAdvanced.cs (1)
48var model = pipeline.Fit(split.TrainSet);
Dynamic\Trainers\Regression\LightGbmWithOptionsAdvanced.cs (1)
57var model = pipeline.Fit(split.TrainSet);
Dynamic\Trainers\Regression\OrdinaryLeastSquaresAdvanced.cs (1)
55var model = pipeline.Fit(split.TrainSet);
Dynamic\Trainers\Regression\OrdinaryLeastSquaresWithOptionsAdvanced.cs (1)
59var model = pipeline.Fit(split.TrainSet);
Microsoft.ML.Samples.GPU (3)
docs\samples\Microsoft.ML.Samples\Dynamic\Trainers\MulticlassClassification\ImageClassification\ImageClassificationDefault.cs (1)
61IDataView trainDataset = trainTestData.TrainSet;
docs\samples\Microsoft.ML.Samples\Dynamic\Trainers\MulticlassClassification\ImageClassification\ResnetV2101TransferLearningEarlyStopping.cs (1)
60IDataView trainDataset = trainTestData.TrainSet;
docs\samples\Microsoft.ML.Samples\Dynamic\Trainers\MulticlassClassification\ImageClassification\ResnetV2101TransferLearningTrainTestSplit.cs (1)
60IDataView trainDataset = trainTestData.TrainSet;
Microsoft.ML.TensorFlow.Tests (5)
TensorflowTests.cs (5)
1415IDataView trainDataset = trainTestData.TrainSet; 1490IDataView trainDataset = trainTestData.TrainSet; 1622IDataView trainDataset = trainTestData.TrainSet; 1777IDataView trainDataset = trainTestData.TrainSet; 1867IDataView trainDataset = trainTestData.TrainSet;
Microsoft.ML.Tests (15)
Scenarios\Api\CookbookSamples\CookbookSamplesDynamicApi.cs (1)
658var model = pipeline.Fit(split.TrainSet);
Scenarios\Api\TestApi.cs (12)
318ttSplit.TrainSet, 320ttSplitWithSeed.TrainSet, 322ttSplitWithSeedAndSamplingKey.TrainSet, 324cvSplit.First().TrainSet, 326cvSplitWithSeed.First().TrainSet, 328cvSplitWithSeedAndSamplingKey.First().TrainSet, 378var stratTrainWorkclass = getWorkclass(stratSplit.TrainSet); 390var stratTrainWithSeedWorkclass = getWorkclass(stratSeed.TrainSet); 473ids = split.TrainSet.GetColumn<int>(split.TrainSet.Schema[nameof(Input.Id)]); 486Assert.NotNull(split.TrainSet.Schema.GetColumnOrNull("KeyStrat")); // Check that the key column used as SamplingKeyColumn wasn't deleted by the split 508Assert.NotNull(split.TrainSet.Schema.GetColumnOrNull(colname));
Scenarios\RegressionTest.cs (1)
25IDataView trainingDataView = context.Data.FilterRowsByColumn(splitData.TrainSet, "FareAmount", lowerBound: 1, upperBound: 150);
TrainerEstimators\TreeEnsembleFeaturizerTest.cs (1)
800var trainData = split.TrainSet;
Microsoft.ML.TorchSharp.Tests (3)
NerTests.cs (1)
232var transformer = estimator.Fit(trainTest.TrainSet);
TextClassificationTests.cs (2)
180var model = pipeline.Fit(trainTestSplit.TrainSet); 443var model = estimator.Fit(dataSplit.TrainSet);