7 instantiations of NormalizingEstimator
Microsoft.ML.Data (7)
DataLoadSave\DataOperationsCatalog.cs (1)
584
data = new
NormalizingEstimator
(env, new NormalizingEstimator.MinMaxColumnOptions(splitColumnName, samplingKeyColumn, ensureZeroUntouched: false)).Fit(data).Transform(data);
Transforms\NormalizeColumn.cs (6)
300
var normalizer = new
NormalizingEstimator
(env, new NormalizingEstimator.MinMaxColumnOptions(outputColumnName, inputColumnName ?? outputColumnName));
320
var normalizer = new
NormalizingEstimator
(env, columns);
338
var normalizer = new
NormalizingEstimator
(env, columns);
358
var normalizer = new
NormalizingEstimator
(env, columns);
379
var normalizer = new
NormalizingEstimator
(env, columns);
401
var normalizer = new
NormalizingEstimator
(env, columns);
261 references to NormalizingEstimator
Microsoft.ML.AutoML.Tests (1)
PurposeInferenceTests.cs (1)
33
var
normalizer = context.Transforms.NormalizeMinMax(DefaultColumnNames.Features);
Microsoft.ML.Data (59)
DataLoadSave\DataOperationsCatalog.cs (1)
584
data = new NormalizingEstimator(env, new
NormalizingEstimator
.MinMaxColumnOptions(splitColumnName, samplingKeyColumn, ensureZeroUntouched: false)).Fit(data).Transform(data);
Transforms\NormalizeColumn.cs (26)
48
/// More contemporaneous API usage of normalization ought to use <see cref="
NormalizingEstimator
"/>
300
var
normalizer = new NormalizingEstimator(env, new
NormalizingEstimator
.MinMaxColumnOptions(outputColumnName, inputColumnName ?? outputColumnName));
314
.Select(col => new
NormalizingEstimator
.MinMaxColumnOptions(
320
var
normalizer = new NormalizingEstimator(env, columns);
332
.Select(col => new
NormalizingEstimator
.MeanVarianceColumnOptions(
338
var
normalizer = new NormalizingEstimator(env, columns);
352
.Select(col => new
NormalizingEstimator
.LogMeanVarianceColumnOptions(
358
var
normalizer = new NormalizingEstimator(env, columns);
372
.Select(col => new
NormalizingEstimator
.BinningColumnOptions(
379
var
normalizer = new NormalizingEstimator(env, columns);
393
.Select(col => new
NormalizingEstimator
.RobustScalingColumnOptions(
401
var
normalizer = new NormalizingEstimator(env, columns);
972
return CreateBuilder(new
NormalizingEstimator
.MinMaxColumnOptions(
979
public static IColumnFunctionBuilder CreateBuilder(
NormalizingEstimator
.MinMaxColumnOptions column, IHost host,
1009
return CreateBuilder(new
NormalizingEstimator
.MeanVarianceColumnOptions(
1017
public static IColumnFunctionBuilder CreateBuilder(
NormalizingEstimator
.MeanVarianceColumnOptions column, IHost host,
1049
return CreateBuilder(new
NormalizingEstimator
.LogMeanVarianceColumnOptions(
1056
public static IColumnFunctionBuilder CreateBuilder(
NormalizingEstimator
.LogMeanVarianceColumnOptions column, IHost host,
1089
return CreateBuilder(new
NormalizingEstimator
.BinningColumnOptions(
1097
public static IColumnFunctionBuilder CreateBuilder(
NormalizingEstimator
.BinningColumnOptions column, IHost host,
1139
new
NormalizingEstimator
.SupervisedBinningColumOptions(
1150
public static IColumnFunctionBuilder CreateBuilder(
NormalizingEstimator
.SupervisedBinningColumOptions column, IHost host,
1157
private static IColumnFunctionBuilder CreateBuilder(
NormalizingEstimator
.SupervisedBinningColumOptions column, IHost host,
1201
return CreateBuilder(new
NormalizingEstimator
.RobustScalingColumnOptions(
1210
public static IColumnFunctionBuilder CreateBuilder(
NormalizingEstimator
.RobustScalingColumnOptions column, IHost host,
Transforms\NormalizeColumnDbl.cs (12)
1551
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.MinMaxColumnOptions column, IHost host, DataViewType srcType,
1601
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.MinMaxColumnOptions column, IHost host, VectorDataViewType srcType,
1665
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.MeanVarianceColumnOptions column, IHost host, DataViewType srcType,
1672
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.LogMeanVarianceColumnOptions column, IHost host, DataViewType srcType,
1746
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.MeanVarianceColumnOptions column, IHost host, VectorDataViewType srcType,
1754
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.LogMeanVarianceColumnOptions column, IHost host, VectorDataViewType srcType,
1867
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.BinningColumnOptions column, IHost host, DataViewType srcType,
1916
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.BinningColumnOptions column, IHost host, VectorDataViewType srcType,
2000
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.SupervisedBinningColumOptions column, IHost host, int valueColumnId, int labelColumnId, DataViewRow dataRow)
2040
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.SupervisedBinningColumOptions column, IHost host, int valueColumnId, int labelColumnId, DataViewRow dataRow)
2084
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.RobustScalingColumnOptions column, IHost host, DataViewType srcType,
2153
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.RobustScalingColumnOptions column, IHost host, VectorDataViewType srcType,
Transforms\NormalizeColumnSng.cs (12)
1714
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.MinMaxColumnOptions column, IHost host, DataViewType srcType,
1764
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.MinMaxColumnOptions column, IHost host, VectorDataViewType srcType,
1828
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.MeanVarianceColumnOptions column, IHost host, DataViewType srcType,
1835
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.LogMeanVarianceColumnOptions column, IHost host, DataViewType srcType,
1909
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.MeanVarianceColumnOptions column, IHost host, VectorDataViewType srcType,
1917
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.LogMeanVarianceColumnOptions column, IHost host, VectorDataViewType srcType,
2030
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.BinningColumnOptions column, IHost host, DataViewType srcType,
2079
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.BinningColumnOptions column, IHost host, VectorDataViewType srcType,
2164
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.SupervisedBinningColumOptions column, IHost host, int valueColumnId, int labelColumnId, DataViewRow dataRow)
2204
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.SupervisedBinningColumOptions column, IHost host, int valueColumnId, int labelColumnId, DataViewRow dataRow)
2248
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.RobustScalingColumnOptions column, IHost host, DataViewType srcType,
2315
public static IColumnFunctionBuilder Create(
NormalizingEstimator
.RobustScalingColumnOptions column, IHost host, VectorDataViewType srcType,
Transforms\Normalizer.cs (8)
291
/// Initializes a new instance of <see cref="
NormalizingEstimator
"/>.
304
/// Initializes a new instance of <see cref="
NormalizingEstimator
"/>.
312
_host = env.Register(nameof(
NormalizingEstimator
));
318
/// Initializes a new instance of <see cref="
NormalizingEstimator
"/>.
325
_host = env.Register(nameof(
NormalizingEstimator
));
373
/// <see cref="ITransformer"/> resulting from fitting an <see cref="
NormalizingEstimator
"/>.
531
internal static NormalizingTransformer Train(IHostEnvironment env, IDataView data,
NormalizingEstimator
.ColumnOptionsBase[] columns)
550
var supervisedBinColumn = info as
NormalizingEstimator
.SupervisedBinningColumOptions;
Microsoft.ML.IntegrationTests (3)
ModelFiles.cs (3)
329
var
pipeline = mlContext.Transforms.NormalizeMinMax("Features");
426
var
estimator = mlContext.Transforms.NormalizeMinMax("Features");
459
var
estimator = mlContext.Transforms.NormalizeMinMax("Features");
Microsoft.ML.Samples (15)
Dynamic\Transforms\NormalizeBinning.cs (2)
32
var
normalize = mlContext.Transforms.NormalizeBinning("Features",
39
var
normalizeFixZero = mlContext.Transforms.NormalizeBinning("Features",
Dynamic\Transforms\NormalizeBinningMulticolumn.cs (1)
37
var
normalize = mlContext.Transforms.NormalizeBinning(new[]{
Dynamic\Transforms\NormalizeLogMeanVariance.cs (2)
31
var
normalize = mlContext.Transforms.NormalizeLogMeanVariance(
36
var
normalizeNoCdf = mlContext.Transforms.NormalizeLogMeanVariance(
Dynamic\Transforms\NormalizeLogMeanVarianceFixZero.cs (2)
29
var
normalize = mlContext.Transforms.NormalizeLogMeanVariance("Features", true, useCdf: true);
32
var
normalizeNoCdf = mlContext.Transforms.NormalizeLogMeanVariance("Features", true, useCdf: false);
Dynamic\Transforms\NormalizeMeanVariance.cs (2)
31
var
normalize = mlContext.Transforms.NormalizeMeanVariance("Features",
36
var
normalizeNoCdf = mlContext.Transforms.NormalizeMeanVariance(
Dynamic\Transforms\NormalizeMinMax.cs (2)
29
var
normalize = mlContext.Transforms.NormalizeMinMax("Features",
35
var
normalizeFixZero = mlContext.Transforms.NormalizeMinMax("Features",
Dynamic\Transforms\NormalizeMinMaxMulticolumn.cs (2)
53
var
normalize = mlContext.Transforms.NormalizeMinMax(columnPair,
59
var
normalizeFixZero = mlContext.Transforms.NormalizeMinMax(columnPair,
Dynamic\Transforms\NormalizeSupervisedBinning.cs (2)
44
var
normalize = mlContext.Transforms.NormalizeSupervisedBinning(
52
var
normalizeFixZero = mlContext.Transforms.NormalizeSupervisedBinning(
Microsoft.ML.TensorFlow.Tests (1)
TensorflowTests.cs (1)
710
.Append(_mlContext.Transforms.Normalize(new
NormalizingEstimator
.MinMaxColumnOptions("Features", "Placeholder")))
Microsoft.ML.Tests (95)
Scenarios\Api\CookbookSamples\CookbookSamplesDynamicApi.cs (3)
312
new
NormalizingEstimator
.MinMaxColumnOptions("MinMaxNormalized", "Features", ensureZeroUntouched: true),
313
new
NormalizingEstimator
.MeanVarianceColumnOptions("MeanVarNormalized", "Features", fixZero: true),
314
new
NormalizingEstimator
.BinningColumnOptions("BinNormalized", "Features", maximumBinCount: 256));
TrainerEstimators\OnlineLinearTests.cs (2)
25
var
regressionPipe = ML.Transforms.NormalizeMinMax("Features");
39
var
binaryPipe = ML.Transforms.NormalizeMinMax("Features");
Transformers\NormalizerTests.cs (90)
50
var
est = new NormalizingEstimator(Env,
51
new
NormalizingEstimator
.MinMaxColumnOptions("float1"),
52
new
NormalizingEstimator
.MinMaxColumnOptions("float4"),
53
new
NormalizingEstimator
.MinMaxColumnOptions("double1"),
54
new
NormalizingEstimator
.MinMaxColumnOptions("double4"),
55
new
NormalizingEstimator
.BinningColumnOptions("float1bin", "float1"),
56
new
NormalizingEstimator
.BinningColumnOptions("float4bin", "float4"),
57
new
NormalizingEstimator
.BinningColumnOptions("double1bin", "double1"),
58
new
NormalizingEstimator
.BinningColumnOptions("double4bin", "double4"),
59
new
NormalizingEstimator
.SupervisedBinningColumOptions("float1supervisedbin", "float1", labelColumnName: "int1"),
60
new
NormalizingEstimator
.SupervisedBinningColumOptions("float4supervisedbin", "float4", labelColumnName: "int1"),
61
new
NormalizingEstimator
.SupervisedBinningColumOptions("double1supervisedbin", "double1", labelColumnName: "int1"),
62
new
NormalizingEstimator
.SupervisedBinningColumOptions("double4supervisedbin", "double4", labelColumnName: "int1"),
63
new
NormalizingEstimator
.MeanVarianceColumnOptions("float1mv", "float1"),
64
new
NormalizingEstimator
.MeanVarianceColumnOptions("float4mv", "float4"),
65
new
NormalizingEstimator
.MeanVarianceColumnOptions("double1mv", "double1"),
66
new
NormalizingEstimator
.MeanVarianceColumnOptions("double4mv", "double4"),
67
new
NormalizingEstimator
.LogMeanVarianceColumnOptions("float1lmv", "float1"),
68
new
NormalizingEstimator
.LogMeanVarianceColumnOptions("float4lmv", "float4"),
69
new
NormalizingEstimator
.LogMeanVarianceColumnOptions("double1lmv", "double1"),
70
new
NormalizingEstimator
.LogMeanVarianceColumnOptions("double4lmv", "double4"),
71
new
NormalizingEstimator
.RobustScalingColumnOptions("float1rb", "float1"),
72
new
NormalizingEstimator
.RobustScalingColumnOptions("float4rb", "float4"),
73
new
NormalizingEstimator
.RobustScalingColumnOptions("double1rb", "double1"),
74
new
NormalizingEstimator
.RobustScalingColumnOptions("double4rb", "double4"));
119
var
est = new NormalizingEstimator(Env,
120
new
NormalizingEstimator
.MinMaxColumnOptions("float1"),
121
new
NormalizingEstimator
.MinMaxColumnOptions("float4"),
122
new
NormalizingEstimator
.MinMaxColumnOptions("double1"),
123
new
NormalizingEstimator
.MinMaxColumnOptions("double4"),
124
new
NormalizingEstimator
.BinningColumnOptions("float1bin", "float1"),
125
new
NormalizingEstimator
.BinningColumnOptions("float4bin", "float4"),
126
new
NormalizingEstimator
.BinningColumnOptions("double1bin", "double1"),
127
new
NormalizingEstimator
.BinningColumnOptions("double4bin", "double4"),
128
new
NormalizingEstimator
.MeanVarianceColumnOptions("float1mv", "float1"),
129
new
NormalizingEstimator
.MeanVarianceColumnOptions("float4mv", "float4"),
130
new
NormalizingEstimator
.MeanVarianceColumnOptions("double1mv", "double1"),
131
new
NormalizingEstimator
.MeanVarianceColumnOptions("double4mv", "double4"),
132
new
NormalizingEstimator
.LogMeanVarianceColumnOptions("float1lmv", "float1"),
133
new
NormalizingEstimator
.LogMeanVarianceColumnOptions("float4lmv", "float4"),
134
new
NormalizingEstimator
.LogMeanVarianceColumnOptions("double1lmv", "double1"),
135
new
NormalizingEstimator
.LogMeanVarianceColumnOptions("double4lmv", "double4"));
391
var
robustScalerEstimator = context.Transforms.NormalizeRobustScaling(
481
var
est1 = new NormalizingEstimator(Env, "float4");
482
var
est2 = new NormalizingEstimator(Env,
NormalizingEstimator
.NormalizationMode.MinMax, ("float4", "float4"));
483
var
est3 = new NormalizingEstimator(Env, new
NormalizingEstimator
.MinMaxColumnOptions("float4"));
484
var
est4 = ML.Transforms.NormalizeMinMax("float4", "float4");
485
var
est5 = ML.Transforms.NormalizeMinMax("float4");
503
var
est6 = new NormalizingEstimator(Env,
NormalizingEstimator
.NormalizationMode.MeanVariance, ("float4", "float4"));
504
var
est7 = new NormalizingEstimator(Env, new
NormalizingEstimator
.MeanVarianceColumnOptions("float4"));
505
var
est8 = ML.Transforms.NormalizeMeanVariance("float4", "float4");
516
var
est9 = new NormalizingEstimator(Env,
NormalizingEstimator
.NormalizationMode.LogMeanVariance, ("float4", "float4"));
517
var
est10 = new NormalizingEstimator(Env, new
NormalizingEstimator
.LogMeanVarianceColumnOptions("float4"));
518
var
est11 = ML.Transforms.NormalizeLogMeanVariance("float4", "float4");
529
var
est12 = new NormalizingEstimator(Env,
NormalizingEstimator
.NormalizationMode.Binning, ("float4", "float4"));
530
var
est13 = new NormalizingEstimator(Env, new
NormalizingEstimator
.BinningColumnOptions("float4"));
531
var
est14 = ML.Transforms.NormalizeBinning("float4", "float4");
542
var
est15 = new NormalizingEstimator(Env,
NormalizingEstimator
.NormalizationMode.SupervisedBinning, ("float4", "float4"));
543
var
est16 = new NormalizingEstimator(Env, new
NormalizingEstimator
.SupervisedBinningColumOptions("float4"));
544
var
est17 = ML.Transforms.NormalizeSupervisedBinning("float4", "float4");
555
var
est18 = new NormalizingEstimator(Env,
NormalizingEstimator
.NormalizationMode.RobustScaling, ("float4", "float4"));
556
var
est19 = new NormalizingEstimator(Env, new
NormalizingEstimator
.RobustScalingColumnOptions("float4"));
557
var
est20 = ML.Transforms.NormalizeRobustScaling("float4", "float4");
586
var
est1 = ML.Transforms.NormalizeMinMax("float4", "float4");
587
var
est2 = ML.Transforms.NormalizeMeanVariance("float4", "float4");
588
var
est3 = ML.Transforms.NormalizeLogMeanVariance("float4", "float4");
589
var
est4 = ML.Transforms.NormalizeBinning("float4", "float4");
590
var
est5 = ML.Transforms.NormalizeSupervisedBinning("float4", "float4");
593
var
est6 = ML.Transforms.NormalizeMinMax("float4", "float4");
594
var
est7 = ML.Transforms.NormalizeMeanVariance("float4", "float4");
595
var
est8 = ML.Transforms.NormalizeLogMeanVariance("float4", "float4");
596
var
est9 = ML.Transforms.NormalizeBinning("float4", "float4");
597
var
est10 = ML.Transforms.NormalizeSupervisedBinning("float4", "float4");
642
var
est = ML.Transforms.NormalizeMinMax("output", "input");
908
var
normalize = ML.Transforms.NormalizeLogMeanVariance("Features", true, useCdf: true);
911
var
normalizeNoCdf = ML.Transforms.NormalizeLogMeanVariance("Features", true, useCdf: false);
949
var
normalize = ML.Transforms.NormalizeLogMeanVariance("Features", true, useCdf: true);
952
var
normalizeNoCdf = ML.Transforms.NormalizeLogMeanVariance("Features", true, useCdf: false);
Microsoft.ML.Transforms (87)
NormalizerCatalog.cs (87)
22
/// <param name="mode">The <see cref="
NormalizingEstimator
.NormalizationMode"/> used to map the old values to the new ones. </param>
25
internal static
NormalizingEstimator
Normalize(this TransformsCatalog catalog,
26
NormalizingEstimator
.NormalizationMode mode,
35
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes based on the observed minimum and maximum values of the data.
51
public static
NormalizingEstimator
NormalizeMinMax(this TransformsCatalog catalog,
53
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
54
bool fixZero =
NormalizingEstimator
.Defaults.EnsureZeroUntouched)
56
var columnOptions = new
NormalizingEstimator
.MinMaxColumnOptions(outputColumnName, inputColumnName, maximumExampleCount, fixZero);
61
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes based on the observed minimum and maximum values of the data.
76
public static
NormalizingEstimator
NormalizeMinMax(this TransformsCatalog catalog, InputOutputColumnPair[] columns,
77
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
78
bool fixZero =
NormalizingEstimator
.Defaults.EnsureZeroUntouched) =>
81
new
NormalizingEstimator
.MinMaxColumnOptions(column.OutputColumnName, column.InputColumnName, maximumExampleCount, fixZero)).ToArray());
84
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes based on the computed mean and variance of the data.
101
public static
NormalizingEstimator
NormalizeMeanVariance(this TransformsCatalog catalog,
103
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
104
bool fixZero =
NormalizingEstimator
.Defaults.EnsureZeroUntouched,
105
bool useCdf =
NormalizingEstimator
.Defaults.MeanVarCdf)
107
var columnOptions = new
NormalizingEstimator
.MeanVarianceColumnOptions(outputColumnName, inputColumnName, maximumExampleCount, fixZero, useCdf);
112
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes based on the computed mean and variance of the data.
121
public static
NormalizingEstimator
NormalizeMeanVariance(this TransformsCatalog catalog, InputOutputColumnPair[] columns,
122
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
123
bool fixZero =
NormalizingEstimator
.Defaults.EnsureZeroUntouched,
124
bool useCdf =
NormalizingEstimator
.Defaults.MeanVarCdf) =>
127
new
NormalizingEstimator
.MeanVarianceColumnOptions(column.OutputColumnName, column.InputColumnName, maximumExampleCount, fixZero, useCdf)).ToArray());
130
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes based on the computed mean and variance of the logarithm of the data.
146
public static
NormalizingEstimator
NormalizeLogMeanVariance(this TransformsCatalog catalog,
148
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
149
bool useCdf =
NormalizingEstimator
.Defaults.LogMeanVarCdf)
151
var columnOptions = new
NormalizingEstimator
.LogMeanVarianceColumnOptions(outputColumnName, inputColumnName, maximumExampleCount, useCdf, false);
156
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes based on the computed mean and variance of the logarithm of the data.
164
public static
NormalizingEstimator
NormalizeLogMeanVariance(this TransformsCatalog catalog, InputOutputColumnPair[] columns,
165
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
166
bool useCdf =
NormalizingEstimator
.Defaults.LogMeanVarCdf) =>
169
new
NormalizingEstimator
.LogMeanVarianceColumnOptions(column.OutputColumnName, column.InputColumnName, maximumExampleCount, useCdf, false)).ToArray());
172
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes based on the computed mean and variance of the logarithm of the data.
189
public static
NormalizingEstimator
NormalizeLogMeanVariance(this TransformsCatalog catalog,
193
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
194
bool useCdf =
NormalizingEstimator
.Defaults.LogMeanVarCdf)
196
var columnOptions = new
NormalizingEstimator
.LogMeanVarianceColumnOptions(outputColumnName, inputColumnName, maximumExampleCount, useCdf, fixZero);
201
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes based on the computed mean and variance of the logarithm of the data.
210
public static
NormalizingEstimator
NormalizeLogMeanVariance(this TransformsCatalog catalog, InputOutputColumnPair[] columns,
212
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
213
bool useCdf =
NormalizingEstimator
.Defaults.LogMeanVarCdf) =>
216
new
NormalizingEstimator
.LogMeanVarianceColumnOptions(column.OutputColumnName, column.InputColumnName, maximumExampleCount, useCdf, fixZero)).ToArray());
219
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes by assigning the data into bins with equal density.
236
public static
NormalizingEstimator
NormalizeBinning(this TransformsCatalog catalog,
238
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
239
bool fixZero =
NormalizingEstimator
.Defaults.EnsureZeroUntouched,
240
int maximumBinCount =
NormalizingEstimator
.Defaults.MaximumBinCount)
242
var columnOptions = new
NormalizingEstimator
.BinningColumnOptions(outputColumnName, inputColumnName, maximumExampleCount, fixZero, maximumBinCount);
247
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes by assigning the data into bins with equal density.
263
public static
NormalizingEstimator
NormalizeBinning(this TransformsCatalog catalog, InputOutputColumnPair[] columns,
264
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
265
bool fixZero =
NormalizingEstimator
.Defaults.EnsureZeroUntouched,
266
int maximumBinCount =
NormalizingEstimator
.Defaults.MaximumBinCount) =>
269
new
NormalizingEstimator
.BinningColumnOptions(column.OutputColumnName, column.InputColumnName, maximumExampleCount, fixZero, maximumBinCount)).ToArray());
272
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes by assigning the data into bins based on correlation with the <paramref name="labelColumnName"/> column.
291
public static
NormalizingEstimator
NormalizeSupervisedBinning(this TransformsCatalog catalog,
294
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
295
bool fixZero =
NormalizingEstimator
.Defaults.EnsureZeroUntouched,
296
int maximumBinCount =
NormalizingEstimator
.Defaults.MaximumBinCount,
297
int mininimumExamplesPerBin =
NormalizingEstimator
.Defaults.MininimumBinSize)
299
var columnOptions = new
NormalizingEstimator
.SupervisedBinningColumOptions(outputColumnName, inputColumnName, labelColumnName, maximumExampleCount, fixZero, maximumBinCount, mininimumExamplesPerBin);
304
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes by assigning the data into bins based on correlation with the <paramref name="labelColumnName"/> column.
315
public static
NormalizingEstimator
NormalizeSupervisedBinning(this TransformsCatalog catalog, InputOutputColumnPair[] columns,
317
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
318
bool fixZero =
NormalizingEstimator
.Defaults.EnsureZeroUntouched,
319
int maximumBinCount =
NormalizingEstimator
.Defaults.MaximumBinCount,
320
int mininimumExamplesPerBin =
NormalizingEstimator
.Defaults.MininimumBinSize) =>
323
new
NormalizingEstimator
.SupervisedBinningColumOptions(
327
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes using statistics that are robust to outliers by centering the data around 0 (removing the median) and scales
346
public static
NormalizingEstimator
NormalizeRobustScaling(this TransformsCatalog catalog,
348
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
349
bool centerData =
NormalizingEstimator
.Defaults.CenterData,
350
uint quantileMin =
NormalizingEstimator
.Defaults.QuantileMin,
351
uint quantileMax =
NormalizingEstimator
.Defaults.QuantileMax)
353
var columnOptions = new
NormalizingEstimator
.RobustScalingColumnOptions(outputColumnName, inputColumnName, maximumExampleCount, centerData, quantileMin, quantileMax);
358
/// Create a <see cref="
NormalizingEstimator
"/>, which normalizes using statistics that are robust to outliers by centering the data around 0 (removing the median) and scales
376
public static
NormalizingEstimator
NormalizeRobustScaling(this TransformsCatalog catalog, InputOutputColumnPair[] columns,
377
long maximumExampleCount =
NormalizingEstimator
.Defaults.MaximumExampleCount,
378
bool centerData =
NormalizingEstimator
.Defaults.CenterData,
379
uint quantileMin =
NormalizingEstimator
.Defaults.QuantileMin,
380
uint quantileMax =
NormalizingEstimator
.Defaults.QuantileMax) =>
383
new
NormalizingEstimator
.RobustScalingColumnOptions(column.OutputColumnName, column.InputColumnName, maximumExampleCount, centerData, quantileMin, quantileMax)).ToArray());
391
internal static
NormalizingEstimator
Normalize(this TransformsCatalog catalog,
392
params
NormalizingEstimator
.ColumnOptionsBase[] columns)