|
using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;
namespace Samples.Dynamic
{
public class NormalizeMinMax
{
public static void Example()
{
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[4] { 1, 1, 3, 0} },
new DataPoint(){ Features = new float[4] { 2, 2, 2, 0} },
new DataPoint(){ Features = new float[4] { 0, 0, 1, 0} },
new DataPoint(){ Features = new float[4] {-1,-1,-1, 1} }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
// NormalizeMinMax normalize rows by finding min and max values in each
// row slot and setting projection of min value to 0 and max to 1 and
// everything else to values in between.
var normalize = mlContext.Transforms.NormalizeMinMax("Features",
fixZero: false);
// Normalize rows by finding min and max values in each row slot, but
// make sure zero values remain zero after normalization. Helps
// preserve sparsity. That is, to help maintain very little non-zero elements.
var normalizeFixZero = mlContext.Transforms.NormalizeMinMax("Features",
fixZero: true);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var normalizeTransform = normalize.Fit(data);
var transformedData = normalizeTransform.Transform(data);
var normalizeFixZeroTransform = normalizeFixZero.Fit(data);
var fixZeroData = normalizeFixZeroTransform.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
foreach (var row in column)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 0.6667, 0.6667, 1.0000, 0.0000
// 1.0000, 1.0000, 0.7500, 0.0000
// 0.3333, 0.3333, 0.5000, 0.0000
// 0.0000, 0.0000, 0.0000, 1.0000
var columnFixZero = fixZeroData.GetColumn<float[]>("Features")
.ToArray();
foreach (var row in columnFixZero)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 0.5000, 0.5000, 1.0000, 0.0000
// 1.0000, 1.0000, 0.6667, 0.0000
// 0.0000, 0.0000, 0.3333, 0.0000
// -0.5000,-0.5000,-0.3333, 1.0000
// Get transformation parameters. Since we work with only one
// column we need to pass 0 as parameter for
// GetNormalizerModelParameters. If we have multiple columns
// transformations we need to pass index of InputOutputColumnPair.
var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
as AffineNormalizerModelParameters<ImmutableArray<float>>;
Console.WriteLine($"The 1-index value in resulting array would be " +
$"produced by:");
Console.WriteLine(" y = (x - (" + (transformParams.Offset.Length == 0 ?
0 : transformParams.Offset[1]) + ")) * " + transformParams
.Scale[1]);
// Expected output:
// The 1-index value in resulting array would be produce by:
// y = (x - (-1)) * 0.3333333
}
private class DataPoint
{
[VectorType(4)]
public float[] Features { get; set; }
}
}
}
|