|
using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;
namespace Samples.Dynamic
{
public class NormalizeLogMeanVarianceFixZero
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for exception tracking and logging,
// as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[5] { 1, 1, 3, 0, float.MaxValue } },
new DataPoint(){ Features = new float[5] { 2, 2, 2, 0, float.MinValue } },
new DataPoint(){ Features = new float[5] { 0, 0, 1, 0, 0} },
new DataPoint(){ Features = new float[5] {-1,-1,-1, 1, 1} }
};
// Convert training data to IDataView, the general data type used in ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
// NormalizeLogMeanVariance normalizes the data based on the computed mean and variance of the logarithm of the data.
// Uses Cumulative distribution function as output.
var normalize = mlContext.Transforms.NormalizeLogMeanVariance("Features", true, useCdf: true);
// NormalizeLogMeanVariance normalizes the data based on the computed mean and variance of the logarithm of the data.
var normalizeNoCdf = mlContext.Transforms.NormalizeLogMeanVariance("Features", true, useCdf: false);
// Now we can transform the data and look at the output to confirm the behavior of the estimator.
// This operation doesn't actually evaluate data until we read the data below.
var normalizeTransform = normalize.Fit(data);
var transformedData = normalizeTransform.Transform(data);
var normalizeNoCdfTransform = normalizeNoCdf.Fit(data);
var noCdfData = normalizeNoCdfTransform.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
foreach (var row in column)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString("f4"))));
// Expected output:
// 0.1587, 0.1587, 0.8654, 0.0000, 0.8413
// 0.8413, 0.8413, 0.5837, 0.0000, 0.0000
// 0.0000, 0.0000, 0.0940, 0.0000, 0.0000
// 0.0000, 0.0000, 0.0000, 0.0000, 0.1587
var columnFixZero = noCdfData.GetColumn<float[]>("Features").ToArray();
foreach (var row in columnFixZero)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString("f4"))));
// Expected output:
// 2.0403, 2.0403, 4.0001, 0.0000, 5423991000000000000000000000000000000.0000
// 4.0806, 4.0806, 2.6667, 0.0000,-5423991000000000000000000000000000000.0000
// 0.0000, 0.0000, 1.3334, 0.0000, 0.0000
// -2.0403,-2.0403,-1.3334, 0.0000, 0.0159
// Let's get transformation parameters. Since we work with only one column we need to pass 0 as parameter for GetNormalizerModelParameters.
// If we have multiple columns transformations we need to pass index of InputOutputColumnPair.
var transformParams = normalizeTransform.GetNormalizerModelParameters(0) as CdfNormalizerModelParameters<ImmutableArray<float>>;
Console.WriteLine("The values in the column with index 1 in the resulting array would be produced by:");
Console.WriteLine($"y = 0.5* (1 + ERF((Math.Log(x)- {transformParams.Mean[1]}) / ({transformParams.StandardDeviation[1]} * sqrt(2)))");
// ERF is https://en.wikipedia.org/wiki/Error_function.
// Expected output:
// The values in the column with index 1 in the resulting array would be produced by:
// y = 0.5 * (1 + ERF((Math.Log(x) - 0.3465736) / (0.3465736 * sqrt(2)))
var noCdfParams = normalizeNoCdfTransform.GetNormalizerModelParameters(0) as AffineNormalizerModelParameters<ImmutableArray<float>>;
var offset = noCdfParams.Offset.Length == 0 ? 0 : noCdfParams.Offset[1];
var scale = noCdfParams.Scale[1];
Console.WriteLine($"The values in the column with index 1 in the resulting array would be produced by: y = (x - ({offset})) * {scale}");
// Expected output:
// The values in the column with index 1 in the resulting array would be produced by: y = (x - (0)) * 2.040279
}
private class DataPoint
{
[VectorType(5)]
public float[] Features { get; set; }
}
}
}
|