45 references to RoleMappedData
Microsoft.ML.Core (13)
Data\RoleMappedSchema.cs (4)
31/// that case, please use the <see cref="RoleMappedData"/> class. 33/// Note that there is no need for components consuming a <see cref="RoleMappedData"/> or <see cref="RoleMappedSchema"/> 39/// <seealso cref="RoleMappedData"/> 112/// for giving to constructors of <see cref="RoleMappedSchema"/> and <see cref="RoleMappedData"/>.
EntryPoints\PredictorModel.cs (1)
51internal abstract void PrepareData(IHostEnvironment env, IDataView input, out RoleMappedData roleMappedData, out IPredictor predictor);
Prediction\ITrainer.cs (2)
93public static IPredictor Train(this ITrainer trainer, RoleMappedData trainData) 104public static TPredictor Train<TPredictor>(this ITrainer<TPredictor> trainer, RoleMappedData trainData) where TPredictor : IPredictor
Prediction\TrainContext.cs (6)
21public RoleMappedData TrainingSet { get; } 28public RoleMappedData ValidationSet { get; } 36public RoleMappedData TestSet { get; } 53public TrainContext(RoleMappedData trainingSet, RoleMappedData validationSet = null, RoleMappedData testSet = null, IPredictor initialPredictor = null)
Microsoft.ML.Data (9)
Commands\EvaluateCommand.cs (2)
91/// Both take a <see cref="RoleMappedData"/> as input. The <see cref="RoleMappedData"/> is assumed to contain all the column
Evaluators\EvaluatorBase.cs (1)
15/// <see cref="GetPerInstanceMetricsCore"/>. Note that the input <see cref="RoleMappedData"/> is assumed to contain all the column
Evaluators\EvaluatorUtils.cs (1)
747/// <param name="perInstance">The array of scored data views to evaluate. These are passed as <see cref="RoleMappedData"/>
Evaluators\MamlEvaluator.cs (3)
17/// The input <see cref="RoleMappedData"/> to the <see cref="IEvaluator.Evaluate"/> and the <see cref="IEvaluator.GetPerInstanceMetrics"/> methods 19/// evaluation should be searched for by name in the <see cref="RoleMappedData.Schema"/>. 51/// methods create a new <see cref="RoleMappedData"/> containing all the columns needed for evaluation, and call the corresponding
Training\TrainerUtils.cs (2)
16/// Options for creating a <see cref="TrainingCursorBase"/> from a <see cref="RoleMappedData"/> with specified standard columns active. 252/// Create a row cursor set for the <see cref="RoleMappedData"/> with the indicated standard columns active.
Microsoft.ML.Ensemble (2)
EntryPoints\CreateEnsemble.cs (2)
315/// This method takes a <see cref="RoleMappedData"/> as input, saves it as an in-memory <see cref="ZipArchive"/> 350/// as a <see cref="RoleMappedData"/>, and the second as a double byte array and a string array. The double
Microsoft.ML.FastTree (7)
FastTreeClassification.cs (1)
187var trainData = context.TrainingSet;
FastTreeRanking.cs (1)
141var trainData = context.TrainingSet;
FastTreeRegression.cs (1)
111var trainData = context.TrainingSet;
FastTreeTweedie.cs (1)
120var trainData = context.TrainingSet;
RandomForestClassification.cs (1)
214var trainData = context.TrainingSet;
RandomForestRegression.cs (1)
353var trainData = context.TrainingSet;
TreeEnsembleFeaturizer.cs (1)
645var data = TrainAndScoreTransformer.CreateDataFromArgs(ch, input, args);
Microsoft.ML.KMeansClustering (1)
KMeansPlusPlusTrainer.cs (1)
200var data = context.TrainingSet;
Microsoft.ML.Mkl.Components (1)
OlsLinearRegression.cs (1)
156var examples = context.TrainingSet;
Microsoft.ML.Recommender (2)
RecommenderUtils.cs (2)
14/// Check if the considered data, <see cref="RoleMappedData"/>, contains column roles specified by <see cref="MatrixColumnIndexKind"/> and <see cref="MatrixRowIndexKind"/>. 40/// Checks whether a column kind in a <see cref="RoleMappedData"/> is unique, and its type
Microsoft.ML.StandardTrainers (10)
Standard\LogisticRegression\LbfgsPredictorBase.cs (1)
438var data = context.TrainingSet;
Standard\MulticlassClassification\MetaMulticlassTrainer.cs (1)
120var data = context.TrainingSet;
Standard\MulticlassClassification\MulticlassNaiveBayesTrainer.cs (1)
135var data = context.TrainingSet;
Standard\Online\OnlineLinear.cs (3)
201/// Called by <see cref="TrainCore(IChannel, RoleMappedData, TrainStateBase)"/> at the start of a pass over the dataset. 212/// Called by <see cref="TrainCore(IChannel, RoleMappedData, TrainStateBase)"/> after a pass over the dataset. 288var data = context.TrainingSet;
Standard\SdcaBinary.cs (3)
2205/// It's used at the end of <see cref="TrainCore(IChannel, RoleMappedData, LinearModelParameters, int)"/> to finalize the trained model. 2310/// Given weights and bias trained in <see cref="SgdBinaryTrainerBase{TModelParameters}.TrainCore(IChannel, RoleMappedData, LinearModelParameters, int)"/>, 2437/// a calibrator would be added after <see cref="SgdBinaryTrainerBase{TModelParameters}.TrainCore(IChannel, RoleMappedData, LinearModelParameters, int)"/>
Standard\Simple\SimpleTrainers.cs (1)
253var data = context.TrainingSet;