19 instantiations of SweepablePipeline
Microsoft.ML.AutoML (19)
API\AutoCatalog.cs (8)
403
return new
SweepablePipeline
().Append(res.ToArray());
526
return new
SweepablePipeline
().Append(res.ToArray());
618
return new
SweepablePipeline
().Append(res.ToArray());
634
return new
SweepablePipeline
().Append(new[] { SweepableEstimatorFactory.CreateFeaturizeText(option) });
653
return new
SweepablePipeline
().Append(new[] { SweepableEstimatorFactory.CreateReplaceMissingValues(replaceMissingValueOption) });
694
return new
SweepablePipeline
().Append(new SweepableEstimator[] { SweepableEstimatorFactory.CreateOneHotEncoding(option), SweepableEstimatorFactory.CreateOneHotHashEncoding(option) });
727
var pipeline = new
SweepablePipeline
();
834
var pipeline = new
SweepablePipeline
();
API\MulticlassClassificationExperiment.cs (1)
323
SweepablePipeline pipeline = new
SweepablePipeline
();
API\RegressionExperiment.cs (1)
305
SweepablePipeline pipeline = new
SweepablePipeline
();
API\SweepableExtension.cs (6)
11
return new
SweepablePipeline
().Append(estimator).Append(estimator1);
21
return new
SweepablePipeline
().Append(estimator).Append(estimator1);
26
return new
SweepablePipeline
().Append(estimator).Append(estimator1);
32
var res = new
SweepablePipeline
().Append(sweepableEstimator).Append(pipeline);
39
var pipeline = new
SweepablePipeline
();
48
var pipeline = new
SweepablePipeline
().Append(sweepableEstimator).Append(estimators);
SweepableEstimator\Converter\SweepablePipelineConverter.cs (1)
22
return new
SweepablePipeline
(estimators, Entity.FromExpression(schema), currentSchema);
SweepableEstimator\SweepablePipeline.cs (2)
114
return new
SweepablePipeline
(pipelineNodes, entity, schema);
191
return new
SweepablePipeline
(estimators, schema);
130 references to SweepablePipeline
Microsoft.ML.AutoML (83)
API\AutoCatalog.cs (14)
337
public
SweepablePipeline
BinaryClassification(string labelColumnName = DefaultColumnNames.Label,
434
public
SweepablePipeline
MultiClassification(
551
public
SweepablePipeline
Regression(
626
internal
SweepablePipeline
TextFeaturizer(string outputColumnName, string inputColumnName)
638
/// Create a <see cref="
SweepablePipeline
"/> for featurizing numeric columns.
642
internal
SweepablePipeline
NumericFeaturizer(string[] outputColumnNames, string[] inputColumnNames)
657
/// Create a <see cref="
SweepablePipeline
"/> for featurizing boolean columns. This pipeline convert all boolean column
684
internal
SweepablePipeline
CatalogFeaturizer(string[] outputColumnNames, string[] inputColumnNames)
697
internal
SweepablePipeline
ImagePathFeaturizer(string outputColumnName, string inputColumnName)
727
var
pipeline = new SweepablePipeline();
747
public
SweepablePipeline
Featurizer(IDataView data, string outputColumnName = "Features", string[] catelogicalColumns = null, string[] numericColumns = null, string[] textColumns = null, string[] imagePathColumns = null, string[] excludeColumns = null)
814
/// <returns>A <see cref="
SweepablePipeline
"/> for featurization.</returns>
815
public
SweepablePipeline
Featurizer(IDataView data, ColumnInformation columnInformation, string outputColumnName = "Features")
834
var
pipeline = new SweepablePipeline();
API\AutoMLExperimentExtension.cs (3)
139
/// <param name="pipeline"><see cref="
SweepablePipeline
"/></param>
141
public static AutoMLExperiment SetPipeline(this AutoMLExperiment experiment,
SweepablePipeline
pipeline)
338
/// set <see cref="EciCostFrugalTuner"/> as tuner for hyper-parameter optimization. This tuner only works with search space from <see cref="
SweepablePipeline
"/>.
API\BinaryClassificationExperiment.cs (10)
145
private
SweepablePipeline
_pipeline;
194
var
pipeline = provider.GetService<
SweepablePipeline
>();
227
var
pipeline = provider.GetService<
SweepablePipeline
>();
281
var
pipeline = provider.GetService<
SweepablePipeline
>();
324
private
SweepablePipeline
CreateBinaryClassificationPipeline(IDataView trainData, ColumnInformation columnInformation, IEstimator<ITransformer> preFeaturizer = null)
362
private readonly
SweepablePipeline
_pipeline;
364
public BinaryClassificationRunner(IMLContextManager contextManager, IDatasetManager datasetManager, IMetricManager metricManager,
SweepablePipeline
pipeline, AutoMLExperiment.AutoMLExperimentSettings settings)
API\MulticlassClassificationExperiment.cs (11)
129
private
SweepablePipeline
_pipeline;
179
var
pipeline = provider.GetService<
SweepablePipeline
>();
214
var
pipeline = provider.GetService<
SweepablePipeline
>();
271
var
pipeline = provider.GetService<
SweepablePipeline
>();
314
private
SweepablePipeline
CreateMulticlassClassificationPipeline(IDataView trainData, ColumnInformation columnInformation, IEstimator<ITransformer> preFeaturizer = null)
323
SweepablePipeline
pipeline = new SweepablePipeline();
347
private readonly
SweepablePipeline
_pipeline;
350
public MulticlassClassificationRunner(IMLContextManager contextManager, IDatasetManager datasetManager, IMetricManager metricManager,
SweepablePipeline
pipeline, AutoMLExperiment.AutoMLExperimentSettings settings)
API\RegressionExperiment.cs (11)
124
private
SweepablePipeline
_pipeline;
167
var
pipeline = provider.GetService<
SweepablePipeline
>();
208
var
pipeline = provider.GetService<
SweepablePipeline
>();
264
var
pipeline = provider.GetService<
SweepablePipeline
>();
297
private
SweepablePipeline
CreateRegressionPipeline(IDataView trainData, ColumnInformation columnInformation, IEstimator<ITransformer> preFeaturizer = null)
305
SweepablePipeline
pipeline = new SweepablePipeline();
367
private readonly
SweepablePipeline
_pipeline;
370
public RegressionTrialRunner(IMLContextManager contextManager, IDatasetManager datasetManager, IMetricManager metricManager,
SweepablePipeline
pipeline, AutoMLExperiment.AutoMLExperimentSettings settings)
API\SweepableExtension.cs (13)
9
public static
SweepablePipeline
Append(this IEstimator<ITransformer> estimator, SweepableEstimator estimator1)
14
public static
SweepablePipeline
Append(this
SweepablePipeline
pipeline, IEstimator<ITransformer> estimator)
19
public static
SweepablePipeline
Append(this SweepableEstimator estimator,
SweepablePipeline
estimator1)
24
public static
SweepablePipeline
Append(this SweepableEstimator estimator, IEstimator<ITransformer> estimator1)
29
public static
SweepablePipeline
Append(this IEstimator<ITransformer> estimator,
SweepablePipeline
pipeline)
32
var
res = new SweepablePipeline().Append(sweepableEstimator).Append(pipeline);
37
public static
SweepablePipeline
Append(this SweepableEstimator estimator, params SweepableEstimator[] estimators)
39
var
pipeline = new SweepablePipeline();
45
public static
SweepablePipeline
Append(this IEstimator<ITransformer> estimator, params SweepableEstimator[] estimators)
48
var
pipeline = new SweepablePipeline().Append(sweepableEstimator).Append(estimators);
AutoMLExperiment\IMonitor.cs (3)
32
private readonly
SweepablePipeline
_pipeline;
34
public MLContextMonitor(IChannel logger,
SweepablePipeline
pipeline)
74
public TrialResultMonitor(IChannel channel,
SweepablePipeline
pipeline)
AutoMLExperiment\Runner\SweepablePipelineRunner.cs (2)
23
private readonly
SweepablePipeline
_pipeline;
26
public SweepablePipelineRunner(MLContext context,
SweepablePipeline
pipeline, IEvaluateMetricManager metricManager, IDatasetManager datasetManager, IChannel? logger = null)
SweepableEstimator\Converter\SweepablePipelineConverter.cs (3)
13
internal class SweepablePipelineConverter : JsonConverter<
SweepablePipeline
>
15
public override
SweepablePipeline
Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
25
public override void Write(Utf8JsonWriter writer,
SweepablePipeline
value, JsonSerializerOptions options)
SweepableEstimator\SweepablePipeline.cs (4)
107
public
SweepablePipeline
BuildSweepableEstimatorPipeline(string schema)
117
public
SweepablePipeline
Append(params ISweepable<IEstimator<ITransformer>>[] sweepables)
134
else if (sweepable is
SweepablePipeline
pipeline)
172
private
SweepablePipeline
AppendEntity(bool allowSkip, Entity entity)
Tuner\AutoZeroTuner.cs (3)
23
private readonly
SweepablePipeline
_sweepablePipeline;
27
public AutoZeroTuner(
SweepablePipeline
pipeline, AggregateTrainingStopManager aggregateTrainingStopManager, IEvaluateMetricManager evaluateMetricManager, AutoMLExperiment.AutoMLExperimentSettings settings)
96
var
pipeline = _sweepablePipeline.BuildSweepableEstimatorPipeline(pipelineSchema);
Tuner\EciCfoTuner.cs (1)
26
public EciCostFrugalTuner(
SweepablePipeline
sweepablePipeline, AutoMLExperiment.AutoMLExperimentSettings settings, ITrialResultManager trialResultManager = null)
Tuner\PipelineProposer.cs (3)
42
private readonly
SweepablePipeline
_sweepablePipeline;
46
public PipelineProposer(
SweepablePipeline
sweepablePipeline, AutoMLExperimentSettings settings)
196
private double GetEstimatedCostForPipeline(string schema,
SweepablePipeline
pipeline)
Utils\BestResultUtil.cs (2)
99
public static RunDetail<TMetrics> ToRunDetail<TMetrics>(MLContext context, TrialResult<TMetrics> result,
SweepablePipeline
pipeline)
111
public static CrossValidationRunDetail<TMetrics> ToCrossValidationRunDetail<TMetrics>(MLContext context, TrialResult<TMetrics> result,
SweepablePipeline
pipeline)
Microsoft.ML.AutoML.Interactive (2)
NotebookMonitor.cs (2)
20
public
SweepablePipeline
SweepablePipeline { get; private set; }
27
public NotebookMonitor(
SweepablePipeline
pipeline)
Microsoft.ML.AutoML.Samples (3)
AutoMLExperiment.cs (1)
29
var
pipeline = context.Auto().BinaryClassification(labelColumnName: "Label", featureColumnName: "Features");
Cifar10.cs (1)
38
var
pipeline = context.Auto().Featurizer(trainDataset)
Sweepable\SweepableLightGBMBinaryExperiment.cs (1)
55
var
pipeline = new EstimatorChain<ITransformer>().Append(lgbm);
Microsoft.ML.AutoML.Tests (35)
AutoFeaturizerTests.cs (6)
48
var
pipeline = context.Auto().Featurizer(dataset, outputColumnName: "OutputFeature", excludeColumns: new[] { "Label" });
60
var
pipeline = context.Auto().Featurizer(dataset, excludeColumns: new[] { "Label" });
72
var
pipeline = context.Auto().Featurizer(dataset, excludeColumns: new[] { DatasetUtil.NewspaperChurnLabel });
85
var
pipeline = context.Auto().Featurizer(dataset, excludeColumns: new[] { "A16" });
95
var
pipeline = context.Auto().ImagePathFeaturizer("imagePath", "imagePath");
111
var
pipeline = context.Auto().Featurizer(trainData, columnInference.ColumnInformation);
AutoMLExperimentTests.cs (9)
105
var
pipeline = context.Auto().Featurizer(data, "_Features_", excludeColumns: new[] { DatasetUtil.UciAdultLabel })
222
var
pipeline = context.Auto().Featurizer(data, "_Features_", excludeColumns: new[] { DatasetUtil.UciAdultLabel })
247
var
pipeline = context.Auto().Featurizer(data, "_Features_", excludeColumns: new[] { DatasetUtil.UciAdultLabel })
272
var
pipeline = context.Auto().Featurizer(data, "_Features_", excludeColumns: new[] { DatasetUtil.UciAdultLabel })
298
var
pipeline = context.Auto().Featurizer(data, excludeColumns: new[] { label })
325
var
pipeline = context.Auto().Featurizer(data, excludeColumns: new[] { label })
353
var
pipeline = context.Auto().Featurizer(train, excludeColumns: new[] { label })
383
var
pipeline = context.Auto().Featurizer(train, excludeColumns: new[] { label })
402
var
pipeline = context.Auto().Featurizer(train, excludeColumns: new[] { label })
SweepableExtensionTest.cs (16)
51
var
pipeline = estimator.Append(SweepableEstimatorFactory.CreateFastForestBinary(new FastForestOption()));
53
pipeline.Should().BeOfType<
SweepablePipeline
>();
60
var
pipeline = estimator.Append(estimator);
62
pipeline.Should().BeOfType<
SweepablePipeline
>();
70
var
pipeline = estimator.Append(context.Transforms.Concatenate("output", "input"));
72
pipeline.Should().BeOfType<
SweepablePipeline
>();
81
SweepablePipeline
pipeline = context.Transforms.Concatenate("output", "input")
94
SweepablePipeline
pipeline = context.Transforms.Concatenate("output", "input")
107
SweepablePipeline
pipeline = context.Transforms.Concatenate("output", "input")
120
var
pipeline = SweepableEstimatorFactory.CreateFastForestBinary(new FastForestOption())
133
SweepablePipeline
pipeline = context.Transforms.Concatenate("output", "input")
147
SweepablePipeline
pipeline = context.Transforms.Concatenate("output", "input")
161
SweepablePipeline
pipeline = SweepableEstimatorFactory.CreateFeaturizeText(new FeaturizeTextOption())
174
SweepablePipeline
pipeline = context.Transforms.Concatenate("output", "input")
188
var
pipeline = estimator.Append(SweepableEstimatorFactory.CreateFastForestBinary(new FastForestOption()), SweepableEstimatorFactory.CreateFastForestBinary(new FastForestOption()));
191
pipeline.Should().BeOfType<
SweepablePipeline
>();
SweepablePipelineTests.cs (1)
46
var
pipeline = new SweepablePipeline();
TunerTests.cs (3)
168
var
pipeline = this.CreateDummySweepablePipeline(context);
203
var
pipeline = this.CreateDummySweepablePipeline(context);
453
private
SweepablePipeline
CreateDummySweepablePipeline(MLContext context)
Microsoft.ML.Fairlearn (6)
AutoML\AutoMLExperimentExtension.cs (2)
78
var
pipeline = serviceProvider.GetRequiredService<
SweepablePipeline
>();
AutoML\TunerFactory.cs (2)
21
private readonly
SweepablePipeline
_pipeline;
31
_pipeline = provider.GetRequiredService<
SweepablePipeline
>();
Reductions\GridSearchTrialRunner.cs (2)
32
private readonly
SweepablePipeline
_pipeline;
36
public GridSearchTrailRunner(MLContext context, ITrainValidateDatasetManager datasetManager, string labelColumn, string sensitiveColumn,
SweepablePipeline
pipeline, ClassificationMoment moment)
Microsoft.ML.Fairlearn.Tests (1)
GridSearchTest.cs (1)
95
var
pipeline = context.Transforms.Categorical.OneHotHashEncoding("sensitiveFeature_encode", "sensitiveFeature")