|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
using System.Diagnostics;
using System.Diagnostics.CodeAnalysis;
using System.Globalization;
using System.Runtime.CompilerServices;
using System.Text;
namespace System
{
internal static class DateTimeParse
{
internal const int MaxDateTimeNumberDigits = 8;
internal const char TimeDelimiter = ':';
internal const char TimeFractionDelimiterComma = ',';
internal const char TimeFractionDelimiterDot = '.';
internal static DateTime ParseExact(ReadOnlySpan<char> s, ReadOnlySpan<char> format, DateTimeFormatInfo dtfi, DateTimeStyles style)
{
DateTimeResult result = default; // The buffer to store the parsing result.
result.Init(s);
if (TryParseExact(s, format, dtfi, style, ref result))
{
return result.parsedDate;
}
else
{
throw GetDateTimeParseException(ref result);
}
}
internal static DateTime ParseExact(ReadOnlySpan<char> s, ReadOnlySpan<char> format, DateTimeFormatInfo dtfi, DateTimeStyles style, out TimeSpan offset)
{
DateTimeResult result = default; // The buffer to store the parsing result.
result.Init(s);
result.flags |= ParseFlags.CaptureOffset;
if (TryParseExact(s, format, dtfi, style, ref result))
{
offset = result.timeZoneOffset;
return result.parsedDate;
}
else
{
throw GetDateTimeParseException(ref result);
}
}
internal static bool TryParseExact(ReadOnlySpan<char> s, ReadOnlySpan<char> format, DateTimeFormatInfo dtfi, DateTimeStyles style, out DateTime result)
{
DateTimeResult resultData = default; // The buffer to store the parsing result.
resultData.Init(s);
if (TryParseExact(s, format, dtfi, style, ref resultData))
{
result = resultData.parsedDate;
return true;
}
result = DateTime.MinValue;
return false;
}
internal static bool TryParseExact(ReadOnlySpan<char> s, ReadOnlySpan<char> format, DateTimeFormatInfo dtfi, DateTimeStyles style, out DateTime result, out TimeSpan offset)
{
DateTimeResult resultData = default; // The buffer to store the parsing result.
resultData.Init(s);
resultData.flags |= ParseFlags.CaptureOffset;
if (TryParseExact(s, format, dtfi, style, ref resultData))
{
result = resultData.parsedDate;
offset = resultData.timeZoneOffset;
return true;
}
result = DateTime.MinValue;
offset = TimeSpan.Zero;
return false;
}
internal static bool TryParseExact(ReadOnlySpan<char> s, ReadOnlySpan<char> format, DateTimeFormatInfo dtfi, DateTimeStyles style, scoped ref DateTimeResult result)
{
if (s.Length == 0)
{
result.SetBadDateTimeFailure();
return false;
}
if (format.Length == 0)
{
result.SetBadFormatSpecifierFailure();
return false;
}
Debug.Assert(dtfi != null, "dtfi == null");
return DoStrictParse(s, format, style, dtfi, ref result);
}
internal static DateTime ParseExactMultiple(ReadOnlySpan<char> s, string[] formats,
DateTimeFormatInfo dtfi, DateTimeStyles style)
{
DateTimeResult result = default; // The buffer to store the parsing result.
result.Init(s);
if (TryParseExactMultiple(s, formats, dtfi, style, ref result))
{
return result.parsedDate;
}
else
{
throw GetDateTimeParseException(ref result);
}
}
internal static DateTime ParseExactMultiple(ReadOnlySpan<char> s, string[] formats,
DateTimeFormatInfo dtfi, DateTimeStyles style, out TimeSpan offset)
{
DateTimeResult result = default; // The buffer to store the parsing result.
result.Init(s);
result.flags |= ParseFlags.CaptureOffset;
if (TryParseExactMultiple(s, formats, dtfi, style, ref result))
{
offset = result.timeZoneOffset;
return result.parsedDate;
}
else
{
throw GetDateTimeParseException(ref result);
}
}
internal static bool TryParseExactMultiple(ReadOnlySpan<char> s, string?[]? formats,
DateTimeFormatInfo dtfi, DateTimeStyles style, out DateTime result, out TimeSpan offset)
{
DateTimeResult resultData = default; // The buffer to store the parsing result.
resultData.Init(s);
resultData.flags |= ParseFlags.CaptureOffset;
if (TryParseExactMultiple(s, formats, dtfi, style, ref resultData))
{
result = resultData.parsedDate;
offset = resultData.timeZoneOffset;
return true;
}
result = DateTime.MinValue;
offset = TimeSpan.Zero;
return false;
}
internal static bool TryParseExactMultiple(ReadOnlySpan<char> s, string?[]? formats,
DateTimeFormatInfo dtfi, DateTimeStyles style, out DateTime result)
{
DateTimeResult resultData = default; // The buffer to store the parsing result.
resultData.Init(s);
if (TryParseExactMultiple(s, formats, dtfi, style, ref resultData))
{
result = resultData.parsedDate;
return true;
}
result = DateTime.MinValue;
return false;
}
internal static bool TryParseExactMultiple(ReadOnlySpan<char> s, string?[]? formats,
DateTimeFormatInfo dtfi, DateTimeStyles style, scoped ref DateTimeResult result)
{
if (formats == null)
{
result.SetFailure(ParseFailureKind.ArgumentNull_String);
return false;
}
if (s.Length == 0)
{
result.SetBadDateTimeFailure();
return false;
}
if (formats.Length == 0)
{
result.SetFailure(ParseFailureKind.Format_NoFormatSpecifier);
return false;
}
Debug.Assert(dtfi != null, "dtfi == null");
//
// Do a loop through the provided formats and see if we can parse successfully in
// one of the formats.
//
for (int i = 0; i < formats.Length; i++)
{
string? format = formats[i];
if (string.IsNullOrEmpty(format))
{
result.SetBadFormatSpecifierFailure();
return false;
}
// Create a new result each time to ensure the runs are independent. Carry through
// flags from the caller and return the result.
DateTimeResult innerResult = default; // The buffer to store the parsing result.
innerResult.Init(s);
innerResult.flags = result.flags;
if (TryParseExact(s, format, dtfi, style, ref innerResult))
{
result.parsedDate = innerResult.parsedDate;
result.timeZoneOffset = innerResult.timeZoneOffset;
return true;
}
}
result.SetBadDateTimeFailure();
return false;
}
////////////////////////////////////////////////////////////////////////////
// Date Token Types
//
// Following is the set of tokens that can be generated from a date
// string. Notice that the legal set of trailing separators have been
// folded in with the date number, and month name tokens. This set
// of tokens is chosen to reduce the number of date parse states.
//
////////////////////////////////////////////////////////////////////////////
internal enum DTT : int
{
End = 0, // '\0'
NumEnd = 1, // Num[ ]*[\0]
NumAmpm = 2, // Num[ ]+AmPm
NumSpace = 3, // Num[ ]+^[Dsep|Tsep|'0\']
NumDatesep = 4, // Num[ ]*Dsep
NumTimesep = 5, // Num[ ]*Tsep
MonthEnd = 6, // Month[ ]*'\0'
MonthSpace = 7, // Month[ ]+^[Dsep|Tsep|'\0']
MonthDatesep = 8, // Month[ ]*Dsep
NumDatesuff = 9, // Month[ ]*DSuff
NumTimesuff = 10, // Month[ ]*TSuff
DayOfWeek = 11, // Day of week name
YearSpace = 12, // Year+^[Dsep|Tsep|'0\']
YearDateSep = 13, // Year+Dsep
YearEnd = 14, // Year+['\0']
TimeZone = 15, // timezone name
Era = 16, // era name
NumUTCTimeMark = 17, // Num + 'Z'
// When you add a new token which will be in the
// state table, add it after NumLocalTimeMark.
Unk = 18, // unknown
NumLocalTimeMark = 19, // Num + 'T'
Max = 20, // marker
}
internal enum TM
{
NotSet = -1,
AM = 0,
PM = 1,
}
////////////////////////////////////////////////////////////////////////////
//
// DateTime parsing state enumeration (DS.*)
//
////////////////////////////////////////////////////////////////////////////
internal enum DS
{
BEGIN = 0,
N = 1, // have one number
NN = 2, // have two numbers
// The following are known to be part of a date
D_Nd = 3, // date string: have number followed by date separator
D_NN = 4, // date string: have two numbers
D_NNd = 5, // date string: have two numbers followed by date separator
D_M = 6, // date string: have a month
D_MN = 7, // date string: have a month and a number
D_NM = 8, // date string: have a number and a month
D_MNd = 9, // date string: have a month and number followed by date separator
D_NDS = 10, // date string: have one number followed a date suffix.
D_Y = 11, // date string: have a year.
D_YN = 12, // date string: have a year and a number
D_YNd = 13, // date string: have a year and a number and a date separator
D_YM = 14, // date string: have a year and a month
D_YMd = 15, // date string: have a year and a month and a date separator
D_S = 16, // have numbers followed by a date suffix.
T_S = 17, // have numbers followed by a time suffix.
// The following are known to be part of a time
T_Nt = 18, // have num followed by time separator
T_NNt = 19, // have two numbers followed by time separator
ERROR = 20,
// The following are terminal states. These all have an action
// associated with them; and transition back to BEGIN.
DX_NN = 21, // day from two numbers
DX_NNN = 22, // day from three numbers
DX_MN = 23, // day from month and one number
DX_NM = 24, // day from month and one number
DX_MNN = 25, // day from month and two numbers
DX_DS = 26, // a set of date suffixed numbers.
DX_DSN = 27, // day from date suffixes and one number.
DX_NDS = 28, // day from one number and date suffixes .
DX_NNDS = 29, // day from one number and date suffixes .
DX_YNN = 30, // date string: have a year and two number
DX_YMN = 31, // date string: have a year, a month, and a number.
DX_YN = 32, // date string: have a year and one number
DX_YM = 33, // date string: have a year, a month.
TX_N = 34, // time from one number (must have ampm)
TX_NN = 35, // time from two numbers
TX_NNN = 36, // time from three numbers
TX_TS = 37, // a set of time suffixed numbers.
DX_NNY = 38,
}
////////////////////////////////////////////////////////////////////////////
//
// NOTE: The following state machine table is dependent on the order of the
// DS and DTT enumerations.
//
// For each non terminal state, the following table defines the next state
// for each given date token type.
//
////////////////////////////////////////////////////////////////////////////
// End NumEnd NumAmPm NumSpace NumDaySep NumTimesep MonthEnd MonthSpace MonthDSep NumDateSuff NumTimeSuff DayOfWeek YearSpace YearDateSep YearEnd TimeZone Era UTCTimeMark
private static readonly DS[][] s_dateParsingStates = [
// DS.BEGIN // DS.BEGIN
[DS.BEGIN, DS.ERROR, DS.TX_N, DS.N, DS.D_Nd, DS.T_Nt, DS.ERROR, DS.D_M, DS.D_M, DS.D_S, DS.T_S, DS.BEGIN, DS.D_Y, DS.D_Y, DS.ERROR, DS.BEGIN, DS.BEGIN, DS.ERROR],
// DS.N // DS.N
[DS.ERROR, DS.DX_NN, DS.TX_NN, DS.NN, DS.D_NNd, DS.ERROR, DS.DX_NM, DS.D_NM, DS.D_MNd, DS.D_NDS, DS.ERROR, DS.N, DS.D_YN, DS.D_YNd, DS.DX_YN, DS.N, DS.N, DS.ERROR],
// DS.NN // DS.NN
[DS.DX_NN, DS.DX_NNN, DS.TX_NNN, DS.DX_NNN, DS.ERROR, DS.T_Nt, DS.DX_MNN, DS.DX_MNN, DS.ERROR, DS.ERROR, DS.T_S, DS.NN, DS.DX_NNY, DS.ERROR, DS.DX_NNY, DS.NN, DS.NN, DS.ERROR],
// DS.D_Nd // DS.D_Nd
[DS.ERROR, DS.DX_NN, DS.ERROR, DS.D_NN, DS.D_NNd, DS.ERROR, DS.DX_NM, DS.D_MN, DS.D_MNd, DS.ERROR, DS.ERROR, DS.D_Nd, DS.D_YN, DS.D_YNd, DS.DX_YN, DS.ERROR, DS.D_Nd, DS.ERROR],
// DS.D_NN // DS.D_NN
[DS.DX_NN, DS.DX_NNN, DS.TX_N, DS.DX_NNN, DS.ERROR, DS.T_Nt, DS.DX_MNN, DS.DX_MNN, DS.ERROR, DS.DX_DS, DS.T_S, DS.D_NN, DS.DX_NNY, DS.ERROR, DS.DX_NNY, DS.ERROR, DS.D_NN, DS.ERROR],
// DS.D_NNd // DS.D_NNd
[DS.ERROR, DS.DX_NNN, DS.DX_NNN, DS.DX_NNN, DS.ERROR, DS.ERROR, DS.DX_MNN, DS.DX_MNN, DS.ERROR, DS.DX_DS, DS.ERROR, DS.D_NNd, DS.DX_NNY, DS.ERROR, DS.DX_NNY, DS.ERROR, DS.D_NNd, DS.ERROR],
// DS.D_M // DS.D_M
[DS.ERROR, DS.DX_MN, DS.ERROR, DS.D_MN, DS.D_MNd, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_M, DS.D_YM, DS.D_YMd, DS.DX_YM, DS.ERROR, DS.D_M, DS.ERROR],
// DS.D_MN // DS.D_MN
[DS.DX_MN, DS.DX_MNN, DS.DX_MNN, DS.DX_MNN, DS.ERROR, DS.T_Nt, DS.ERROR, DS.ERROR, DS.ERROR, DS.DX_DS, DS.T_S, DS.D_MN, DS.DX_YMN, DS.ERROR, DS.DX_YMN, DS.ERROR, DS.D_MN, DS.ERROR],
// DS.D_NM // DS.D_NM
[DS.DX_NM, DS.DX_MNN, DS.DX_MNN, DS.DX_MNN, DS.ERROR, DS.T_Nt, DS.ERROR, DS.ERROR, DS.ERROR, DS.DX_DS, DS.T_S, DS.D_NM, DS.DX_YMN, DS.ERROR, DS.DX_YMN, DS.ERROR, DS.D_NM, DS.ERROR],
// DS.D_MNd // DS.D_MNd
[DS.ERROR, DS.DX_MNN, DS.ERROR, DS.DX_MNN, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_MNd, DS.DX_YMN, DS.ERROR, DS.DX_YMN, DS.ERROR, DS.D_MNd, DS.ERROR],
// DS.D_NDS, // DS.D_NDS,
[DS.DX_NDS, DS.DX_NNDS, DS.DX_NNDS, DS.DX_NNDS, DS.ERROR, DS.T_Nt, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_NDS, DS.T_S, DS.D_NDS, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_NDS, DS.ERROR],
// DS.D_Y // DS.D_Y
[DS.ERROR, DS.DX_YN, DS.ERROR, DS.D_YN, DS.D_YNd, DS.ERROR, DS.DX_YM, DS.D_YM, DS.D_YMd, DS.D_YM, DS.ERROR, DS.D_Y, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_Y, DS.ERROR],
// DS.D_YN // DS.D_YN
[DS.DX_YN, DS.DX_YNN, DS.DX_YNN, DS.DX_YNN, DS.ERROR, DS.ERROR, DS.DX_YMN, DS.DX_YMN, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_YN, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_YN, DS.ERROR],
// DS.D_YNd // DS.D_YNd
[DS.ERROR, DS.DX_YNN, DS.DX_YNN, DS.DX_YNN, DS.ERROR, DS.ERROR, DS.DX_YMN, DS.DX_YMN, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_YN, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_YN, DS.ERROR],
// DS.D_YM // DS.D_YM
[DS.DX_YM, DS.DX_YMN, DS.DX_YMN, DS.DX_YMN, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_YM, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_YM, DS.ERROR],
// DS.D_YMd // DS.D_YMd
[DS.ERROR, DS.DX_YMN, DS.DX_YMN, DS.DX_YMN, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_YM, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_YM, DS.ERROR],
// DS.D_S // DS.D_S
[DS.DX_DS, DS.DX_DSN, DS.TX_N, DS.T_Nt, DS.ERROR, DS.T_Nt, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_S, DS.T_S, DS.D_S, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_S, DS.ERROR],
// DS.T_S // DS.T_S
[DS.TX_TS, DS.TX_TS, DS.TX_TS, DS.T_Nt, DS.D_Nd, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.D_S, DS.T_S, DS.T_S, DS.ERROR, DS.ERROR, DS.ERROR, DS.T_S, DS.T_S, DS.ERROR],
// DS.T_Nt // DS.T_Nt
[DS.ERROR, DS.TX_NN, DS.TX_NN, DS.TX_NN, DS.ERROR, DS.T_NNt, DS.DX_NM, DS.D_NM, DS.ERROR, DS.ERROR, DS.T_S, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.T_Nt, DS.T_Nt, DS.TX_NN],
// DS.T_NNt // DS.T_NNt
[DS.ERROR, DS.TX_NNN, DS.TX_NNN, DS.TX_NNN, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.ERROR, DS.T_S, DS.T_NNt, DS.ERROR, DS.ERROR, DS.ERROR, DS.T_NNt, DS.T_NNt, DS.TX_NNN],
];
// End NumEnd NumAmPm NumSpace NumDaySep NumTimesep MonthEnd MonthSpace MonthDSep NumDateSuff NumTimeSuff DayOfWeek YearSpace YearDateSep YearEnd TimeZone Era UTCMark
internal const string GMTName = "GMT";
internal const string ZuluName = "Z";
//
// Search from the index of str at str.Index to see if the target string exists in the str.
//
private static bool MatchWord(ref __DTString str, string target)
{
if (target.Length > (str.Value.Length - str.Index))
{
return false;
}
if (str.CompareInfo.Compare(str.Value.Slice(str.Index, target.Length), target, CompareOptions.IgnoreCase) != 0)
{
return false;
}
int nextCharIndex = str.Index + target.Length;
if (nextCharIndex < str.Value.Length)
{
char nextCh = str.Value[nextCharIndex];
if (char.IsLetter(nextCh))
{
return false;
}
}
str.Index = nextCharIndex;
if (str.Index < str.Length)
{
str.m_current = str.Value[str.Index];
}
return true;
}
//
// Check the word at the current index to see if it matches GMT name or Zulu name.
//
private static bool GetTimeZoneName(ref __DTString str)
{
if (MatchWord(ref str, GMTName))
{
return true;
}
if (MatchWord(ref str, ZuluName))
{
return true;
}
return false;
}
/*=================================ParseFraction==========================
**Action: Starting at the str.Index, which should be a decimal symbol.
** if the current character is a digit, parse the remaining
** numbers as fraction. For example, if the sub-string starting at str.Index is "123", then
** the method will return 0.123
**Returns: The fraction number.
**Arguments:
** str the parsing string
**Exceptions:
============================================================================*/
private static bool ParseFraction(ref __DTString str, out double result)
{
result = 0;
double decimalBase = 0.1;
int digits = 0;
char ch;
while (str.GetNext() && char.IsAsciiDigit(ch = str.m_current))
{
result += (ch - '0') * decimalBase;
decimalBase *= 0.1;
digits++;
}
return digits > 0;
}
/*=================================ParseTimeZone==========================
**Action: Parse the timezone offset in the following format:
** "+8", "+08", "+0800", "+0800"
** This method is used by DateTime.Parse().
**Returns: The TimeZone offset.
**Arguments:
** str the parsing string
**Exceptions:
** FormatException if invalid timezone format is found.
============================================================================*/
private static bool ParseTimeZone(ref __DTString str, scoped ref TimeSpan result)
{
// The hour/minute offset for timezone.
int hourOffset;
int minuteOffset = 0;
// Consume the +/- character that has already been read
DTSubString sub = str.GetSubString();
if (sub.length != 1)
{
return false;
}
char offsetChar = sub[0];
if (offsetChar != '+' && offsetChar != '-')
{
return false;
}
str.ConsumeSubString(sub);
sub = str.GetSubString();
if (sub.type != DTSubStringType.Number)
{
return false;
}
int value = sub.value;
int length = sub.length;
if (length == 1 || length == 2)
{
// Parsing "+8" or "+08"
hourOffset = value;
str.ConsumeSubString(sub);
// See if we have minutes
sub = str.GetSubString();
if (sub.length == 1 && sub[0] == TimeDelimiter)
{
// Parsing "+8:00" or "+08:00"
str.ConsumeSubString(sub);
sub = str.GetSubString();
if (sub.type != DTSubStringType.Number || sub.length < 1 || sub.length > 2)
{
return false;
}
minuteOffset = sub.value;
str.ConsumeSubString(sub);
}
}
else if (length == 3 || length == 4)
{
// Parsing "+800" or "+0800"
hourOffset = value / 100;
minuteOffset = value % 100;
str.ConsumeSubString(sub);
}
else
{
// Wrong number of digits
return false;
}
Debug.Assert(hourOffset >= 0 && hourOffset <= 99);
Debug.Assert(minuteOffset >= 0 && minuteOffset <= 99);
if (minuteOffset < 0 || minuteOffset >= 60)
{
return false;
}
result = new TimeSpan(hourOffset, minuteOffset, 0);
if (offsetChar == '-')
{
result = result.Negate();
}
return true;
}
// This is the helper function to handle timezone in string in the format like +/-0800
private static bool HandleTimeZone(ref __DTString str, scoped ref DateTimeResult result)
{
if (str.Index < str.Length - 1)
{
char nextCh = str.Value[str.Index];
// Skip whitespace, but don't update the index unless we find a time zone marker
int whitespaceCount = 0;
while (char.IsWhiteSpace(nextCh) && str.Index + whitespaceCount < str.Length - 1)
{
whitespaceCount++;
nextCh = str.Value[str.Index + whitespaceCount];
}
if (nextCh == '+' || nextCh == '-')
{
str.Index += whitespaceCount;
if ((result.flags & ParseFlags.TimeZoneUsed) != 0)
{
// Should not have two timezone offsets.
result.SetBadDateTimeFailure();
return false;
}
result.flags |= ParseFlags.TimeZoneUsed;
if (!ParseTimeZone(ref str, ref result.timeZoneOffset))
{
result.SetBadDateTimeFailure();
return false;
}
}
}
return true;
}
//
// This is the lexer. Check the character at the current index, and put the found token in dtok and
// some raw date/time information in raw.
//
private static bool Lex(DS dps, ref __DTString str, scoped ref DateTimeToken dtok, scoped ref DateTimeRawInfo raw, scoped ref DateTimeResult result, scoped ref DateTimeFormatInfo dtfi, DateTimeStyles styles)
{
int indexBeforeSeparator;
char charBeforeSeparator;
TokenType sep;
dtok.dtt = DTT.Unk; // Assume the token is unknown.
str.GetRegularToken(out TokenType tokenType, out int tokenValue, dtfi);
#if _LOGGING
if (s_tracingEnabled)
{
Trace($"Lex({Hex(str.Value)})\tpos:{str.Index}({Hex(str.m_current)}), {tokenType}, DS.{dps}");
}
#endif // _LOGGING
// Look at the regular token.
switch (tokenType)
{
case TokenType.NumberToken:
case TokenType.YearNumberToken:
if (raw.numCount == 3 || tokenValue == -1)
{
result.SetBadDateTimeFailure();
LexTraceExit("0010", dps);
return false;
}
//
// This is a digit.
//
// If the previous parsing state is DS.T_NNt (like 12:01), and we got another number,
// so we will have a terminal state DS.TX_NNN (like 12:01:02).
// If the previous parsing state is DS.T_Nt (like 12:), and we got another number,
// so we will have a terminal state DS.TX_NN (like 12:01).
//
// Look ahead to see if the following character is a decimal point or timezone offset.
// This enables us to parse time in the forms of:
// "11:22:33.1234" or "11:22:33-08".
if (dps == DS.T_NNt)
{
if (str.Index < str.Length - 1)
{
char nextCh = str.Value[str.Index];
if ((nextCh == TimeFractionDelimiterDot)
|| (nextCh == TimeFractionDelimiterComma))
{
// While ParseFraction can fail, it just means that there were no digits after
// the dot. In this case ParseFraction just removes the dot. This is actually
// valid for cultures like Albanian, that join the time marker to the time with
// with a dot: e.g. "9:03.MD"
ParseFraction(ref str, out raw.fraction);
}
}
}
if (dps == DS.T_NNt || dps == DS.T_Nt)
{
if (str.Index < str.Length - 1)
{
if (!HandleTimeZone(ref str, ref result))
{
LexTraceExit("0020 (value like \"12:01\" or \"12:\" followed by a non-TZ number", dps);
return false;
}
}
}
dtok.num = tokenValue;
if (tokenType == TokenType.YearNumberToken)
{
if (raw.year == -1)
{
raw.year = tokenValue;
//
// If we have number which has 3 or more digits (like "001" or "0001"),
// we assume this number is a year. Save the current raw.numCount in
// raw.year.
//
switch (sep = str.GetSeparatorToken(dtfi, out indexBeforeSeparator, out charBeforeSeparator))
{
case TokenType.SEP_End:
dtok.dtt = DTT.YearEnd;
break;
case TokenType.SEP_Am:
case TokenType.SEP_Pm:
if (raw.timeMark == TM.NotSet)
{
raw.timeMark = (sep == TokenType.SEP_Am ? TM.AM : TM.PM);
dtok.dtt = DTT.YearSpace;
}
else
{
result.SetBadDateTimeFailure();
LexTraceExit("0030 (TM.AM/TM.PM Happened more than 1x)", dps);
}
break;
case TokenType.SEP_Space:
dtok.dtt = DTT.YearSpace;
break;
case TokenType.SEP_Date:
dtok.dtt = DTT.YearDateSep;
break;
case TokenType.SEP_Time:
if (!raw.hasSameDateAndTimeSeparators)
{
result.SetBadDateTimeFailure();
LexTraceExit("0040 (Invalid separator after number)", dps);
return false;
}
// we have the date and time separators are same and getting a year number, then change the token to YearDateSep as
// we are sure we are not parsing time.
dtok.dtt = DTT.YearDateSep;
break;
case TokenType.SEP_DateOrOffset:
// The separator is either a date separator or the start of a time zone offset. If the token will complete the date then
// process just the number and roll back the index so that the outer loop can attempt to parse the time zone offset.
if ((s_dateParsingStates[(int)dps][(int)DTT.YearDateSep] == DS.ERROR)
&& (s_dateParsingStates[(int)dps][(int)DTT.YearSpace] > DS.ERROR))
{
str.Index = indexBeforeSeparator;
str.m_current = charBeforeSeparator;
dtok.dtt = DTT.YearSpace;
}
else
{
dtok.dtt = DTT.YearDateSep;
}
break;
case TokenType.SEP_YearSuff:
case TokenType.SEP_MonthSuff:
case TokenType.SEP_DaySuff:
dtok.dtt = DTT.NumDatesuff;
dtok.suffix = sep;
break;
case TokenType.SEP_HourSuff:
case TokenType.SEP_MinuteSuff:
case TokenType.SEP_SecondSuff:
dtok.dtt = DTT.NumTimesuff;
dtok.suffix = sep;
break;
default:
// Invalid separator after number number.
result.SetBadDateTimeFailure();
LexTraceExit("0040 (Invalid separator after number)", dps);
return false;
}
//
// Found the token already. Return now.
//
LexTraceExit("0050 (success)", dps);
return true;
}
result.SetBadDateTimeFailure();
LexTraceExit("0060", dps);
return false;
}
switch (sep = str.GetSeparatorToken(dtfi, out indexBeforeSeparator, out charBeforeSeparator))
{
//
// Note here we check if the numCount is less than three.
// When we have more than three numbers, it will be caught as error in the state machine.
//
case TokenType.SEP_End:
dtok.dtt = DTT.NumEnd;
raw.AddNumber(dtok.num);
break;
case TokenType.SEP_Am:
case TokenType.SEP_Pm:
if (raw.timeMark == TM.NotSet)
{
raw.timeMark = (sep == TokenType.SEP_Am ? TM.AM : TM.PM);
dtok.dtt = DTT.NumAmpm;
// Fix AM/PM parsing case, e.g. "1/10 5 AM"
if (dps == DS.D_NN)
{
if (!ProcessTerminalState(DS.DX_NN, ref result, ref styles, ref raw, dtfi))
{
return false;
}
}
raw.AddNumber(dtok.num);
}
else
{
result.SetBadDateTimeFailure();
break;
}
if (dps == DS.T_NNt || dps == DS.T_Nt)
{
if (!HandleTimeZone(ref str, ref result))
{
LexTraceExit("0070 (HandleTimeZone returned false)", dps);
return false;
}
}
break;
case TokenType.SEP_Space:
dtok.dtt = DTT.NumSpace;
raw.AddNumber(dtok.num);
break;
case TokenType.SEP_Date:
dtok.dtt = DTT.NumDatesep;
raw.AddNumber(dtok.num);
break;
case TokenType.SEP_DateOrOffset:
// The separator is either a date separator or the start of a time zone offset. If the token will complete the date then
// process just the number and roll back the index so that the outer loop can attempt to parse the time zone offset.
if ((s_dateParsingStates[(int)dps][(int)DTT.NumDatesep] == DS.ERROR)
&& (s_dateParsingStates[(int)dps][(int)DTT.NumSpace] > DS.ERROR))
{
str.Index = indexBeforeSeparator;
str.m_current = charBeforeSeparator;
dtok.dtt = DTT.NumSpace;
}
else
{
dtok.dtt = DTT.NumDatesep;
}
raw.AddNumber(dtok.num);
break;
case TokenType.SEP_Time:
if (raw.hasSameDateAndTimeSeparators &&
(dps == DS.D_Y || dps == DS.D_YN || dps == DS.D_YNd || dps == DS.D_YM || dps == DS.D_YMd))
{
// we are parsing a date and we have the time separator same as date separator, so we mark the token as date separator
dtok.dtt = DTT.NumDatesep;
raw.AddNumber(dtok.num);
break;
}
dtok.dtt = DTT.NumTimesep;
raw.AddNumber(dtok.num);
break;
case TokenType.SEP_YearSuff:
try
{
dtok.num = dtfi.Calendar.ToFourDigitYear(tokenValue);
}
catch (ArgumentOutOfRangeException)
{
result.SetBadDateTimeFailure();
LexTraceExit("0075 (Calendar.ToFourDigitYear failed)", dps);
return false;
}
dtok.dtt = DTT.NumDatesuff;
dtok.suffix = sep;
break;
case TokenType.SEP_MonthSuff:
case TokenType.SEP_DaySuff:
dtok.dtt = DTT.NumDatesuff;
dtok.suffix = sep;
break;
case TokenType.SEP_HourSuff:
case TokenType.SEP_MinuteSuff:
case TokenType.SEP_SecondSuff:
dtok.dtt = DTT.NumTimesuff;
dtok.suffix = sep;
break;
case TokenType.SEP_LocalTimeMark:
dtok.dtt = DTT.NumLocalTimeMark;
raw.AddNumber(dtok.num);
break;
default:
// Invalid separator after number number.
result.SetBadDateTimeFailure();
LexTraceExit("0080", dps);
return false;
}
break;
case TokenType.HebrewNumber:
if (tokenValue >= 100)
{
// This is a year number
if (raw.year == -1)
{
raw.year = tokenValue;
//
// If we have number which has 3 or more digits (like "001" or "0001"),
// we assume this number is a year. Save the current raw.numCount in
// raw.year.
//
switch (sep = str.GetSeparatorToken(dtfi, out indexBeforeSeparator, out charBeforeSeparator))
{
case TokenType.SEP_End:
dtok.dtt = DTT.YearEnd;
break;
case TokenType.SEP_Space:
dtok.dtt = DTT.YearSpace;
break;
case TokenType.SEP_DateOrOffset:
// The separator is either a date separator or the start of a time zone offset. If the token will complete the date then
// process just the number and roll back the index so that the outer loop can attempt to parse the time zone offset.
if (s_dateParsingStates[(int)dps][(int)DTT.YearSpace] > DS.ERROR)
{
str.Index = indexBeforeSeparator;
str.m_current = charBeforeSeparator;
dtok.dtt = DTT.YearSpace;
break;
}
goto default;
default:
// Invalid separator after number number.
result.SetBadDateTimeFailure();
LexTraceExit("0090", dps);
return false;
}
}
else
{
// Invalid separator after number number.
result.SetBadDateTimeFailure();
LexTraceExit("0100", dps);
return false;
}
}
else
{
// This is a day number
dtok.num = tokenValue;
raw.AddNumber(dtok.num);
switch (sep = str.GetSeparatorToken(dtfi, out indexBeforeSeparator, out charBeforeSeparator))
{
//
// Note here we check if the numCount is less than three.
// When we have more than three numbers, it will be caught as error in the state machine.
//
case TokenType.SEP_End:
dtok.dtt = DTT.NumEnd;
break;
case TokenType.SEP_Space:
case TokenType.SEP_Date:
dtok.dtt = DTT.NumDatesep;
break;
case TokenType.SEP_DateOrOffset:
// The separator is either a date separator or the start of a time zone offset. If the token will complete the date then
// process just the number and roll back the index so that the outer loop can attempt to parse the time zone offset.
if ((s_dateParsingStates[(int)dps][(int)DTT.NumDatesep] == DS.ERROR)
&& (s_dateParsingStates[(int)dps][(int)DTT.NumSpace] > DS.ERROR))
{
str.Index = indexBeforeSeparator;
str.m_current = charBeforeSeparator;
dtok.dtt = DTT.NumSpace;
}
else
{
dtok.dtt = DTT.NumDatesep;
}
break;
default:
// Invalid separator after number number.
result.SetBadDateTimeFailure();
LexTraceExit("0110", dps);
return false;
}
}
break;
case TokenType.DayOfWeekToken:
if (raw.dayOfWeek == -1)
{
//
// This is a day of week name.
//
raw.dayOfWeek = tokenValue;
dtok.dtt = DTT.DayOfWeek;
}
else
{
result.SetBadDateTimeFailure();
LexTraceExit("0120 (DayOfWeek seen more than 1x)", dps);
return false;
}
break;
case TokenType.MonthToken:
if (raw.month == -1)
{
//
// This is a month name
//
switch (sep = str.GetSeparatorToken(dtfi, out indexBeforeSeparator, out charBeforeSeparator))
{
case TokenType.SEP_End:
dtok.dtt = DTT.MonthEnd;
break;
case TokenType.SEP_Space:
dtok.dtt = DTT.MonthSpace;
break;
case TokenType.SEP_Date:
dtok.dtt = DTT.MonthDatesep;
break;
case TokenType.SEP_Time:
if (!raw.hasSameDateAndTimeSeparators)
{
result.SetBadDateTimeFailure();
LexTraceExit("0130 (Invalid separator after month name)", dps);
return false;
}
// we have the date and time separators are same and getting a Month name, then change the token to MonthDatesep as
// we are sure we are not parsing time.
dtok.dtt = DTT.MonthDatesep;
break;
case TokenType.SEP_DateOrOffset:
// The separator is either a date separator or the start of a time zone offset. If the token will complete the date then
// process just the number and roll back the index so that the outer loop can attempt to parse the time zone offset.
if ((s_dateParsingStates[(int)dps][(int)DTT.MonthDatesep] == DS.ERROR)
&& (s_dateParsingStates[(int)dps][(int)DTT.MonthSpace] > DS.ERROR))
{
str.Index = indexBeforeSeparator;
str.m_current = charBeforeSeparator;
dtok.dtt = DTT.MonthSpace;
}
else
{
dtok.dtt = DTT.MonthDatesep;
}
break;
default:
// Invalid separator after month name
result.SetBadDateTimeFailure();
LexTraceExit("0130 (Invalid separator after month name)", dps);
return false;
}
raw.month = tokenValue;
}
else
{
result.SetBadDateTimeFailure();
LexTraceExit("0140 (MonthToken seen more than 1x)", dps);
return false;
}
break;
case TokenType.EraToken:
if (result.era != -1)
{
result.era = tokenValue;
dtok.dtt = DTT.Era;
}
else
{
result.SetBadDateTimeFailure();
LexTraceExit("0150 (EraToken seen when result.era already set)", dps);
return false;
}
break;
case TokenType.JapaneseEraToken:
if (GlobalizationMode.Invariant)
{
Debug.Fail("Should never be reached");
return false;
}
// Special case for Japanese. We allow Japanese era name to be used even if the calendar is not Japanese Calendar.
result.calendar = JapaneseCalendar.GetDefaultInstance();
dtfi = DateTimeFormatInfo.GetJapaneseCalendarDTFI();
if (result.era != -1)
{
result.era = tokenValue;
dtok.dtt = DTT.Era;
}
else
{
result.SetBadDateTimeFailure();
LexTraceExit("0160 (JapaneseEraToken seen when result.era already set)", dps);
return false;
}
break;
case TokenType.TEraToken:
if (GlobalizationMode.Invariant)
{
Debug.Fail("Should never be reached");
return false;
}
result.calendar = TaiwanCalendar.GetDefaultInstance();
dtfi = DateTimeFormatInfo.GetTaiwanCalendarDTFI();
if (result.era != -1)
{
result.era = tokenValue;
dtok.dtt = DTT.Era;
}
else
{
result.SetBadDateTimeFailure();
LexTraceExit("0170 (TEraToken seen when result.era already set)", dps);
return false;
}
break;
case TokenType.TimeZoneToken:
//
// This is a timezone designator
//
// NOTENOTE : for now, we only support "GMT" and "Z" (for Zulu time).
//
if ((result.flags & ParseFlags.TimeZoneUsed) != 0)
{
// Should not have two timezone offsets.
result.SetBadDateTimeFailure();
LexTraceExit("0180 (seen GMT or Z more than 1x)", dps);
return false;
}
dtok.dtt = DTT.TimeZone;
result.flags |= ParseFlags.TimeZoneUsed;
result.timeZoneOffset = new TimeSpan(0);
result.flags |= ParseFlags.TimeZoneUtc;
break;
case TokenType.EndOfString:
dtok.dtt = DTT.End;
break;
case TokenType.DateWordToken:
case TokenType.IgnorableSymbol:
// Date words and ignorable symbols can just be skipped over
break;
case TokenType.Am:
case TokenType.Pm:
if (raw.timeMark == TM.NotSet)
{
raw.timeMark = (TM)tokenValue;
}
else
{
result.SetBadDateTimeFailure();
LexTraceExit("0190 (AM/PM timeMark already set)", dps);
return false;
}
break;
case TokenType.UnknownToken:
if (char.IsLetter(str.m_current))
{
result.SetFailure(ParseFailureKind.Format_UnknownDateTimeWord, str.Index);
LexTraceExit("0200", dps);
return false;
}
if ((str.m_current == '-' || str.m_current == '+') && ((result.flags & ParseFlags.TimeZoneUsed) == 0))
{
int originalIndex = str.Index;
if (ParseTimeZone(ref str, ref result.timeZoneOffset))
{
result.flags |= ParseFlags.TimeZoneUsed;
LexTraceExit("0220 (success)", dps);
return true;
}
else
{
// Time zone parse attempt failed. Fall through to punctuation handling.
str.Index = originalIndex;
}
}
// Visual Basic implements string to date conversions on top of DateTime.Parse:
// CDate("#10/10/95#")
//
if (VerifyValidPunctuation(ref str))
{
LexTraceExit("0230 (success)", dps);
return true;
}
result.SetBadDateTimeFailure();
LexTraceExit("0240", dps);
return false;
}
LexTraceExit("0250 (success)", dps);
return true;
}
private static bool VerifyValidPunctuation(ref __DTString str)
{
// Compatibility Behavior. Allow trailing nulls and surrounding hashes
char ch = str.Value[str.Index];
if (ch == '#')
{
bool foundStart = false;
bool foundEnd = false;
for (int i = 0; i < str.Length; i++)
{
ch = str.Value[i];
if (ch == '#')
{
if (foundStart)
{
if (foundEnd)
{
// Having more than two hashes is invalid
return false;
}
else
{
foundEnd = true;
}
}
else
{
foundStart = true;
}
}
else if (ch == '\0')
{
// Allow nulls only at the end
if (!foundEnd)
{
return false;
}
}
else if (!char.IsWhiteSpace(ch))
{
// Anything other than whitespace outside hashes is invalid
if (!foundStart || foundEnd)
{
return false;
}
}
}
if (!foundEnd)
{
// The has was un-paired
return false;
}
// Valid Hash usage: eat the hash and continue.
str.GetNext();
return true;
}
else if (ch == '\0')
{
// Nulls are only valid if they are the only trailing character
if (str.Value.Slice(str.Index + 1).ContainsAnyExcept('\0'))
{
return false;
}
// Move to the end of the string
str.Index = str.Length;
return true;
}
return false;
}
private const int ORDER_YMD = 0; // The order of date is Year/Month/Day.
private const int ORDER_MDY = 1; // The order of date is Month/Day/Year.
private const int ORDER_DMY = 2; // The order of date is Day/Month/Year.
private const int ORDER_YDM = 3; // The order of date is Year/Day/Month
private const int ORDER_YM = 4; // Year/Month order.
private const int ORDER_MY = 5; // Month/Year order.
private const int ORDER_MD = 6; // Month/Day order.
private const int ORDER_DM = 7; // Day/Month order.
//
// Decide the year/month/day order from the datePattern.
//
// Return 0 for YMD, 1 for MDY, 2 for DMY, otherwise -1.
//
private static bool GetYearMonthDayOrder(string datePattern, out int order)
{
int yearOrder = -1;
int monthOrder = -1;
int dayOrder = -1;
int orderCount = 0;
bool inQuote = false;
for (int i = 0; i < datePattern.Length && orderCount < 3; i++)
{
char ch = datePattern[i];
if (ch == '\\' || ch == '%')
{
i++;
continue; // Skip next character that is escaped by this backslash
}
if (ch == '\'' || ch == '"')
{
inQuote = !inQuote;
}
if (!inQuote)
{
if (ch == 'y')
{
yearOrder = orderCount++;
//
// Skip all year pattern charaters.
//
for (; i + 1 < datePattern.Length && datePattern[i + 1] == 'y'; i++)
{
// Do nothing here.
}
}
else if (ch == 'M')
{
monthOrder = orderCount++;
//
// Skip all month pattern characters.
//
for (; i + 1 < datePattern.Length && datePattern[i + 1] == 'M'; i++)
{
// Do nothing here.
}
}
else if (ch == 'd')
{
int patternCount = 1;
//
// Skip all day pattern characters.
//
for (; i + 1 < datePattern.Length && datePattern[i + 1] == 'd'; i++)
{
patternCount++;
}
//
// Make sure this is not "ddd" or "dddd", which means day of week.
//
if (patternCount <= 2)
{
dayOrder = orderCount++;
}
}
}
}
if (yearOrder == 0 && monthOrder == 1 && dayOrder == 2)
{
order = ORDER_YMD;
return true;
}
if (monthOrder == 0 && dayOrder == 1 && yearOrder == 2)
{
order = ORDER_MDY;
return true;
}
if (dayOrder == 0 && monthOrder == 1 && yearOrder == 2)
{
order = ORDER_DMY;
return true;
}
if (yearOrder == 0 && dayOrder == 1 && monthOrder == 2)
{
order = ORDER_YDM;
return true;
}
order = -1;
return false;
}
//
// Decide the year/month order from the pattern.
//
// Return 0 for YM, 1 for MY, otherwise -1.
//
private static bool GetYearMonthOrder(string pattern, out int order)
{
int yearOrder = -1;
int monthOrder = -1;
int orderCount = 0;
bool inQuote = false;
for (int i = 0; i < pattern.Length && orderCount < 2; i++)
{
char ch = pattern[i];
if (ch == '\\' || ch == '%')
{
i++;
continue; // Skip next character that is escaped by this backslash
}
if (ch == '\'' || ch == '"')
{
inQuote = !inQuote;
}
if (!inQuote)
{
if (ch == 'y')
{
yearOrder = orderCount++;
//
// Skip all year pattern charaters.
//
for (; i + 1 < pattern.Length && pattern[i + 1] == 'y'; i++)
{
}
}
else if (ch == 'M')
{
monthOrder = orderCount++;
//
// Skip all month pattern characters.
//
for (; i + 1 < pattern.Length && pattern[i + 1] == 'M'; i++)
{
}
}
}
}
if (yearOrder == 0 && monthOrder == 1)
{
order = ORDER_YM;
return true;
}
if (monthOrder == 0 && yearOrder == 1)
{
order = ORDER_MY;
return true;
}
order = -1;
return false;
}
//
// Decide the month/day order from the pattern.
//
// Return 0 for MD, 1 for DM, otherwise -1.
//
private static bool GetMonthDayOrder(string pattern, out int order)
{
int monthOrder = -1;
int dayOrder = -1;
int orderCount = 0;
bool inQuote = false;
for (int i = 0; i < pattern.Length && orderCount < 2; i++)
{
char ch = pattern[i];
if (ch == '\\' || ch == '%')
{
i++;
continue; // Skip next character that is escaped by this backslash
}
if (ch == '\'' || ch == '"')
{
inQuote = !inQuote;
}
if (!inQuote)
{
if (ch == 'd')
{
int patternCount = 1;
//
// Skip all day pattern charaters.
//
for (; i + 1 < pattern.Length && pattern[i + 1] == 'd'; i++)
{
patternCount++;
}
//
// Make sure this is not "ddd" or "dddd", which means day of week.
//
if (patternCount <= 2)
{
dayOrder = orderCount++;
}
}
else if (ch == 'M')
{
monthOrder = orderCount++;
//
// Skip all month pattern characters.
//
for (; i + 1 < pattern.Length && pattern[i + 1] == 'M'; i++)
{
}
}
}
}
if (monthOrder == 0 && dayOrder == 1)
{
order = ORDER_MD;
return true;
}
if (dayOrder == 0 && monthOrder == 1)
{
order = ORDER_DM;
return true;
}
order = -1;
return false;
}
//
// Adjust the two-digit year if necessary.
//
private static bool TryAdjustYear(ref DateTimeResult result, int year, out int adjustedYear)
{
if (year < 100)
{
try
{
// the Calendar classes need some real work. Many of the calendars that throw
// don't implement a fast/non-allocating (and non-throwing) IsValid{Year|Day|Month} method.
// we are making a targeted try/catch fix in the in-place release but will revisit this code
// in the next side-by-side release.
year = result.calendar.ToFourDigitYear(year);
}
catch (ArgumentOutOfRangeException)
{
adjustedYear = -1;
return false;
}
}
adjustedYear = year;
return true;
}
private static bool SetDateYMD(ref DateTimeResult result, int year, int month, int day)
{
// Note, longer term these checks should be done at the end of the parse. This current
// way of checking creates order dependence with parsing the era name.
if (result.calendar.IsValidDay(year, month, day, result.era))
{
result.SetDate(year, month, day); // YMD
return true;
}
return false;
}
private static bool SetDateMDY(ref DateTimeResult result, int month, int day, int year)
{
return SetDateYMD(ref result, year, month, day);
}
private static bool SetDateDMY(ref DateTimeResult result, int day, int month, int year)
{
return SetDateYMD(ref result, year, month, day);
}
private static bool SetDateYDM(ref DateTimeResult result, int year, int day, int month)
{
return SetDateYMD(ref result, year, month, day);
}
private static void GetDefaultYear(ref DateTimeResult result, scoped ref DateTimeStyles styles)
{
result.Year = result.calendar.GetYear(GetDateTimeNow(ref result, ref styles));
result.flags |= ParseFlags.YearDefault;
}
// Processing teriminal case: DS.DX_NN
private static bool GetDayOfNN(ref DateTimeResult result, scoped ref DateTimeStyles styles, scoped ref DateTimeRawInfo raw, DateTimeFormatInfo dtfi)
{
if ((result.flags & ParseFlags.HaveDate) != 0)
{
// Multiple dates in the input string
result.SetBadDateTimeFailure();
return false;
}
int n1 = raw.GetNumber(0);
int n2 = raw.GetNumber(1);
GetDefaultYear(ref result, ref styles);
if (!GetMonthDayOrder(dtfi.MonthDayPattern, out int order))
{
result.SetFailure(ParseFailureKind.Format_BadDatePattern, dtfi.MonthDayPattern);
return false;
}
if (order == ORDER_MD)
{
if (SetDateYMD(ref result, result.Year, n1, n2)) // MD
{
result.flags |= ParseFlags.HaveDate;
return true;
}
}
else
{
// ORDER_DM
if (SetDateYMD(ref result, result.Year, n2, n1)) // DM
{
result.flags |= ParseFlags.HaveDate;
return true;
}
}
result.SetBadDateTimeFailure();
return false;
}
// Processing teriminal case: DS.DX_NNN
private static bool GetDayOfNNN(ref DateTimeResult result, scoped ref DateTimeRawInfo raw, DateTimeFormatInfo dtfi)
{
if ((result.flags & ParseFlags.HaveDate) != 0)
{
// Multiple dates in the input string
result.SetBadDateTimeFailure();
return false;
}
int n1 = raw.GetNumber(0);
int n2 = raw.GetNumber(1);
int n3 = raw.GetNumber(2);
if (!GetYearMonthDayOrder(dtfi.ShortDatePattern, out int order))
{
result.SetFailure(ParseFailureKind.Format_BadDatePattern, dtfi.ShortDatePattern);
return false;
}
int year;
if (order == ORDER_YMD)
{
if (TryAdjustYear(ref result, n1, out year) && SetDateYMD(ref result, year, n2, n3)) // YMD
{
result.flags |= ParseFlags.HaveDate;
return true;
}
}
else if (order == ORDER_MDY)
{
if (TryAdjustYear(ref result, n3, out year) && SetDateMDY(ref result, n1, n2, year)) // MDY
{
result.flags |= ParseFlags.HaveDate;
return true;
}
}
else if (order == ORDER_DMY)
{
if (TryAdjustYear(ref result, n3, out year) && SetDateDMY(ref result, n1, n2, year)) // DMY
{
result.flags |= ParseFlags.HaveDate;
return true;
}
}
else if (order == ORDER_YDM)
{
if (TryAdjustYear(ref result, n1, out year) && SetDateYDM(ref result, year, n2, n3)) // YDM
{
result.flags |= ParseFlags.HaveDate;
return true;
}
}
result.SetBadDateTimeFailure();
return false;
}
private static bool GetDayOfMN(ref DateTimeResult result, scoped ref DateTimeStyles styles, scoped ref DateTimeRawInfo raw, DateTimeFormatInfo dtfi)
{
if ((result.flags & ParseFlags.HaveDate) != 0)
{
// Multiple dates in the input string
result.SetBadDateTimeFailure();
return false;
}
// The interpretation is based on the MonthDayPattern and YearMonthPattern
//
// MonthDayPattern YearMonthPattern Interpretation
// --------------- ---------------- ---------------
// MMMM dd MMMM yyyy Day
// MMMM dd yyyy MMMM Day
// dd MMMM MMMM yyyy Year
// dd MMMM yyyy MMMM Day
//
// In the first and last cases, it could be either or neither, but a day is a better default interpretation
// than a 2 digit year.
if (!GetMonthDayOrder(dtfi.MonthDayPattern, out int monthDayOrder))
{
result.SetFailure(ParseFailureKind.Format_BadDatePattern, dtfi.MonthDayPattern);
return false;
}
if (monthDayOrder == ORDER_DM)
{
if (!GetYearMonthOrder(dtfi.YearMonthPattern, out int yearMonthOrder))
{
result.SetFailure(ParseFailureKind.Format_BadDatePattern, dtfi.YearMonthPattern);
return false;
}
if (yearMonthOrder == ORDER_MY)
{
if (!TryAdjustYear(ref result, raw.GetNumber(0), out int year) || !SetDateYMD(ref result, year, raw.month, 1))
{
result.SetBadDateTimeFailure();
return false;
}
return true;
}
}
GetDefaultYear(ref result, ref styles);
if (!SetDateYMD(ref result, result.Year, raw.month, raw.GetNumber(0)))
{
result.SetBadDateTimeFailure();
return false;
}
return true;
}
////////////////////////////////////////////////////////////////////////
// Actions:
// Deal with the terminal state for Hebrew Month/Day pattern
//
////////////////////////////////////////////////////////////////////////
private static bool GetHebrewDayOfNM(ref DateTimeResult result, scoped ref DateTimeRawInfo raw, DateTimeFormatInfo dtfi)
{
if (!GetMonthDayOrder(dtfi.MonthDayPattern, out int monthDayOrder))
{
result.SetFailure(ParseFailureKind.Format_BadDatePattern, dtfi.MonthDayPattern);
return false;
}
result.Month = raw.month;
if (monthDayOrder == ORDER_DM || monthDayOrder == ORDER_MD)
{
if (result.calendar.IsValidDay(result.Year, result.Month, raw.GetNumber(0), result.era))
{
result.Day = raw.GetNumber(0);
return true;
}
}
result.SetBadDateTimeFailure();
return false;
}
private static bool GetDayOfNM(ref DateTimeResult result, scoped ref DateTimeStyles styles, scoped ref DateTimeRawInfo raw, DateTimeFormatInfo dtfi)
{
if ((result.flags & ParseFlags.HaveDate) != 0)
{
// Multiple dates in the input string
result.SetBadDateTimeFailure();
return false;
}
// The interpretation is based on the MonthDayPattern and YearMonthPattern
//
// MonthDayPattern YearMonthPattern Interpretation
// --------------- ---------------- ---------------
// MMMM dd MMMM yyyy Day
// MMMM dd yyyy MMMM Year
// dd MMMM MMMM yyyy Day
// dd MMMM yyyy MMMM Day
//
// In the first and last cases, it could be either or neither, but a day is a better default interpretation
// than a 2 digit year.
if (!GetMonthDayOrder(dtfi.MonthDayPattern, out int monthDayOrder))
{
result.SetFailure(ParseFailureKind.Format_BadDatePattern, dtfi.MonthDayPattern);
return false;
}
if (monthDayOrder == ORDER_MD)
{
if (!GetYearMonthOrder(dtfi.YearMonthPattern, out int yearMonthOrder))
{
result.SetFailure(ParseFailureKind.Format_BadDatePattern, dtfi.YearMonthPattern);
return false;
}
if (yearMonthOrder == ORDER_YM)
{
if (!TryAdjustYear(ref result, raw.GetNumber(0), out int year) || !SetDateYMD(ref result, year, raw.month, 1))
{
result.SetBadDateTimeFailure();
return false;
}
return true;
}
}
GetDefaultYear(ref result, ref styles);
if (!SetDateYMD(ref result, result.Year, raw.month, raw.GetNumber(0)))
{
result.SetBadDateTimeFailure();
return false;
}
return true;
}
private static bool GetDayOfMNN(ref DateTimeResult result, scoped ref DateTimeRawInfo raw, DateTimeFormatInfo dtfi)
{
if ((result.flags & ParseFlags.HaveDate) != 0)
{
// Multiple dates in the input string
result.SetBadDateTimeFailure();
return false;
}
int n1 = raw.GetNumber(0);
int n2 = raw.GetNumber(1);
if (!GetYearMonthDayOrder(dtfi.ShortDatePattern, out int order))
{
result.SetFailure(ParseFailureKind.Format_BadDatePattern, dtfi.ShortDatePattern);
return false;
}
int year;
if (order == ORDER_MDY)
{
if (TryAdjustYear(ref result, n2, out year) && result.calendar.IsValidDay(year, raw.month, n1, result.era))
{
result.SetDate(year, raw.month, n1); // MDY
result.flags |= ParseFlags.HaveDate;
return true;
}
else if (TryAdjustYear(ref result, n1, out year) && result.calendar.IsValidDay(year, raw.month, n2, result.era))
{
result.SetDate(year, raw.month, n2); // YMD
result.flags |= ParseFlags.HaveDate;
return true;
}
}
else if (order == ORDER_YMD)
{
if (TryAdjustYear(ref result, n1, out year) && result.calendar.IsValidDay(year, raw.month, n2, result.era))
{
result.SetDate(year, raw.month, n2); // YMD
result.flags |= ParseFlags.HaveDate;
return true;
}
else if (TryAdjustYear(ref result, n2, out year) && result.calendar.IsValidDay(year, raw.month, n1, result.era))
{
result.SetDate(year, raw.month, n1); // DMY
result.flags |= ParseFlags.HaveDate;
return true;
}
}
else if (order == ORDER_DMY)
{
if (TryAdjustYear(ref result, n2, out year) && result.calendar.IsValidDay(year, raw.month, n1, result.era))
{
result.SetDate(year, raw.month, n1); // DMY
result.flags |= ParseFlags.HaveDate;
return true;
}
else if (TryAdjustYear(ref result, n1, out year) && result.calendar.IsValidDay(year, raw.month, n2, result.era))
{
result.SetDate(year, raw.month, n2); // YMD
result.flags |= ParseFlags.HaveDate;
return true;
}
}
result.SetBadDateTimeFailure();
return false;
}
private static bool GetDayOfYNN(ref DateTimeResult result, scoped ref DateTimeRawInfo raw, DateTimeFormatInfo dtfi)
{
if ((result.flags & ParseFlags.HaveDate) != 0)
{
// Multiple dates in the input string
result.SetBadDateTimeFailure();
return false;
}
int n1 = raw.GetNumber(0);
int n2 = raw.GetNumber(1);
string pattern = dtfi.ShortDatePattern;
// For compatibility, don't throw if we can't determine the order, but default to YMD instead
if (GetYearMonthDayOrder(pattern, out int order) && order == ORDER_YDM)
{
if (SetDateYMD(ref result, raw.year, n2, n1))
{
result.flags |= ParseFlags.HaveDate;
return true; // Year + DM
}
}
else
{
if (SetDateYMD(ref result, raw.year, n1, n2))
{
result.flags |= ParseFlags.HaveDate;
return true; // Year + MD
}
}
result.SetBadDateTimeFailure();
return false;
}
private static bool GetDayOfNNY(ref DateTimeResult result, scoped ref DateTimeRawInfo raw, DateTimeFormatInfo dtfi)
{
if ((result.flags & ParseFlags.HaveDate) != 0)
{
// Multiple dates in the input string
result.SetBadDateTimeFailure();
return false;
}
int n1 = raw.GetNumber(0);
int n2 = raw.GetNumber(1);
if (!GetYearMonthDayOrder(dtfi.ShortDatePattern, out int order))
{
result.SetFailure(ParseFailureKind.Format_BadDatePattern, dtfi.ShortDatePattern);
return false;
}
if (order == ORDER_MDY || order == ORDER_YMD)
{
if (SetDateYMD(ref result, raw.year, n1, n2))
{
result.flags |= ParseFlags.HaveDate;
return true; // MD + Year
}
}
else
{
if (SetDateYDM(ref result, raw.year, n1, n2))
{
result.flags |= ParseFlags.HaveDate;
return true; // DM + Year
}
}
result.SetBadDateTimeFailure();
return false;
}
private static bool GetDayOfYMN(ref DateTimeResult result, scoped ref DateTimeRawInfo raw)
{
if ((result.flags & ParseFlags.HaveDate) != 0)
{
// Multiple dates in the input string
result.SetBadDateTimeFailure();
return false;
}
if (SetDateYMD(ref result, raw.year, raw.month, raw.GetNumber(0)))
{
result.flags |= ParseFlags.HaveDate;
return true;
}
result.SetBadDateTimeFailure();
return false;
}
private static bool GetDayOfYN(ref DateTimeResult result, scoped ref DateTimeRawInfo raw)
{
if ((result.flags & ParseFlags.HaveDate) != 0)
{
// Multiple dates in the input string
result.SetBadDateTimeFailure();
return false;
}
if (SetDateYMD(ref result, raw.year, raw.GetNumber(0), 1))
{
result.flags |= ParseFlags.HaveDate;
return true;
}
result.SetBadDateTimeFailure();
return false;
}
private static bool GetDayOfYM(ref DateTimeResult result, scoped ref DateTimeRawInfo raw)
{
if ((result.flags & ParseFlags.HaveDate) != 0)
{
// Multiple dates in the input string
result.SetBadDateTimeFailure();
return false;
}
if (SetDateYMD(ref result, raw.year, raw.month, 1))
{
result.flags |= ParseFlags.HaveDate;
return true;
}
result.SetBadDateTimeFailure();
return false;
}
private static void AdjustTimeMark(DateTimeFormatInfo dtfi, scoped ref DateTimeRawInfo raw)
{
// Specail case for culture which uses AM as empty string.
// E.g. af-ZA (0x0436)
// S1159 \x0000
// S2359 nm
// In this case, if we are parsing a string like "2005/09/14 12:23", we will assume this is in AM.
if (raw.timeMark == TM.NotSet)
{
if (dtfi.AMDesignator != null && dtfi.PMDesignator != null)
{
if (dtfi.AMDesignator.Length == 0 && dtfi.PMDesignator.Length != 0)
{
raw.timeMark = TM.AM;
}
if (dtfi.PMDesignator.Length == 0 && dtfi.AMDesignator.Length != 0)
{
raw.timeMark = TM.PM;
}
}
}
}
//
// Adjust hour according to the time mark.
//
private static bool AdjustHour(ref int hour, TM timeMark)
{
if (timeMark != TM.NotSet)
{
if (timeMark == TM.AM)
{
if (hour < 0 || hour > 12)
{
return false;
}
hour = (hour == 12) ? 0 : hour;
}
else
{
if (hour < 0 || hour > 23)
{
return false;
}
if (hour < 12)
{
hour += 12;
}
}
}
return true;
}
private static bool GetTimeOfN(ref DateTimeResult result, scoped ref DateTimeRawInfo raw)
{
if ((result.flags & ParseFlags.HaveTime) != 0)
{
// Multiple times in the input string
result.SetBadDateTimeFailure();
return false;
}
//
// In this case, we need a time mark. Check if so.
//
if (raw.timeMark == TM.NotSet)
{
result.SetBadDateTimeFailure();
return false;
}
result.Hour = raw.GetNumber(0);
result.flags |= ParseFlags.HaveTime;
return true;
}
private static bool GetTimeOfNN(ref DateTimeResult result, scoped ref DateTimeRawInfo raw)
{
Debug.Assert(raw.numCount >= 2);
if ((result.flags & ParseFlags.HaveTime) != 0)
{
// Multiple times in the input string
result.SetBadDateTimeFailure();
return false;
}
result.Hour = raw.GetNumber(0);
result.Minute = raw.GetNumber(1);
result.flags |= ParseFlags.HaveTime;
return true;
}
private static bool GetTimeOfNNN(ref DateTimeResult result, scoped ref DateTimeRawInfo raw)
{
if ((result.flags & ParseFlags.HaveTime) != 0)
{
// Multiple times in the input string
result.SetBadDateTimeFailure();
return false;
}
Debug.Assert(raw.numCount >= 3);
result.Hour = raw.GetNumber(0);
result.Minute = raw.GetNumber(1);
result.Second = raw.GetNumber(2);
result.flags |= ParseFlags.HaveTime;
return true;
}
//
// Processing terminal state: A Date suffix followed by one number.
//
private static bool GetDateOfDSN(ref DateTimeResult result, scoped ref DateTimeRawInfo raw)
{
if (raw.numCount != 1 || result.Day != -1)
{
result.SetBadDateTimeFailure();
return false;
}
result.Day = raw.GetNumber(0);
return true;
}
private static bool GetDateOfNDS(ref DateTimeResult result, scoped ref DateTimeRawInfo raw)
{
if (result.Month == -1)
{
// Should have a month suffix
result.SetBadDateTimeFailure();
return false;
}
if (result.Year != -1)
{
// Already has a year suffix
result.SetBadDateTimeFailure();
return false;
}
if (!TryAdjustYear(ref result, raw.GetNumber(0), out result.Year))
{
// the year value is out of range
result.SetBadDateTimeFailure();
return false;
}
result.Day = 1;
return true;
}
private static bool GetDateOfNNDS(ref DateTimeResult result, scoped ref DateTimeRawInfo raw, DateTimeFormatInfo dtfi)
{
// For partial CJK Dates, the only valid formats are with a specified year, followed by two numbers, which
// will be the Month and Day, and with a specified Month, when the numbers are either the year and day or
// day and year, depending on the short date pattern.
if ((result.flags & ParseFlags.HaveYear) != 0)
{
if (((result.flags & ParseFlags.HaveMonth) == 0) && ((result.flags & ParseFlags.HaveDay) == 0))
{
if (TryAdjustYear(ref result, raw.year, out result.Year) && SetDateYMD(ref result, result.Year, raw.GetNumber(0), raw.GetNumber(1)))
{
return true;
}
}
}
else if ((result.flags & ParseFlags.HaveMonth) != 0)
{
if (((result.flags & ParseFlags.HaveYear) == 0) && ((result.flags & ParseFlags.HaveDay) == 0))
{
if (!GetYearMonthDayOrder(dtfi.ShortDatePattern, out int order))
{
result.SetFailure(ParseFailureKind.Format_BadDatePattern, dtfi.ShortDatePattern);
return false;
}
int year;
if (order == ORDER_YMD)
{
if (TryAdjustYear(ref result, raw.GetNumber(0), out year) && SetDateYMD(ref result, year, result.Month, raw.GetNumber(1)))
{
return true;
}
}
else
{
if (TryAdjustYear(ref result, raw.GetNumber(1), out year) && SetDateYMD(ref result, year, result.Month, raw.GetNumber(0)))
{
return true;
}
}
}
}
result.SetBadDateTimeFailure();
return false;
}
//
// A date suffix is found, use this method to put the number into the result.
//
private static bool ProcessDateTimeSuffix(ref DateTimeResult result, scoped ref DateTimeRawInfo raw, scoped ref DateTimeToken dtok)
{
switch (dtok.suffix)
{
case TokenType.SEP_YearSuff:
if ((result.flags & ParseFlags.HaveYear) != 0)
{
return false;
}
result.flags |= ParseFlags.HaveYear;
result.Year = raw.year = dtok.num;
break;
case TokenType.SEP_MonthSuff:
if ((result.flags & ParseFlags.HaveMonth) != 0)
{
return false;
}
result.flags |= ParseFlags.HaveMonth;
result.Month = raw.month = dtok.num;
break;
case TokenType.SEP_DaySuff:
if ((result.flags & ParseFlags.HaveDay) != 0)
{
return false;
}
result.flags |= ParseFlags.HaveDay;
result.Day = dtok.num;
break;
case TokenType.SEP_HourSuff:
if ((result.flags & ParseFlags.HaveHour) != 0)
{
return false;
}
result.flags |= ParseFlags.HaveHour;
result.Hour = dtok.num;
break;
case TokenType.SEP_MinuteSuff:
if ((result.flags & ParseFlags.HaveMinute) != 0)
{
return false;
}
result.flags |= ParseFlags.HaveMinute;
result.Minute = dtok.num;
break;
case TokenType.SEP_SecondSuff:
if ((result.flags & ParseFlags.HaveSecond) != 0)
{
return false;
}
result.flags |= ParseFlags.HaveSecond;
result.Second = dtok.num;
break;
}
return true;
}
////////////////////////////////////////////////////////////////////////
//
// Actions:
// This is used by DateTime.Parse().
// Process the terminal state for the Hebrew calendar parsing.
//
////////////////////////////////////////////////////////////////////////
internal static bool ProcessHebrewTerminalState(DS dps, scoped ref DateTimeResult result, scoped ref DateTimeStyles styles, scoped ref DateTimeRawInfo raw, DateTimeFormatInfo dtfi)
{
// The following are accepted terminal state for Hebrew date.
switch (dps)
{
case DS.DX_MNN:
// Deal with the default long/short date format when the year number is ambiguous (i.e. year < 100).
raw.year = raw.GetNumber(1);
if (!dtfi.YearMonthAdjustment(ref raw.year, ref raw.month, true))
{
result.SetFailure(ParseFailureKind.Format_BadDateTimeCalendar);
return false;
}
if (!GetDayOfMNN(ref result, ref raw, dtfi))
{
return false;
}
break;
case DS.DX_YMN:
// Deal with the default long/short date format when the year number is NOT ambiguous (i.e. year >= 100).
if (!dtfi.YearMonthAdjustment(ref raw.year, ref raw.month, true))
{
result.SetFailure(ParseFailureKind.Format_BadDateTimeCalendar);
return false;
}
if (!GetDayOfYMN(ref result, ref raw))
{
return false;
}
break;
case DS.DX_NNY:
// When formatting, we only format up to the hundred digit of the Hebrew year, although Hebrew year is now over 5000.
// E.g. if the year is 5763, we only format as 763. so we do the reverse when parsing.
if (raw.year < 1000)
{
raw.year += 5000;
}
if (!GetDayOfNNY(ref result, ref raw, dtfi))
{
return false;
}
if (!dtfi.YearMonthAdjustment(ref result.Year, ref raw.month, true))
{
result.SetFailure(ParseFailureKind.Format_BadDateTimeCalendar);
return false;
}
break;
case DS.DX_NM:
case DS.DX_MN:
// Deal with Month/Day pattern.
GetDefaultYear(ref result, ref styles);
if (!dtfi.YearMonthAdjustment(ref result.Year, ref raw.month, true))
{
result.SetFailure(ParseFailureKind.Format_BadDateTimeCalendar);
return false;
}
if (!GetHebrewDayOfNM(ref result, ref raw, dtfi))
{
return false;
}
break;
case DS.DX_YM:
// Deal with Year/Month pattern.
if (!dtfi.YearMonthAdjustment(ref raw.year, ref raw.month, true))
{
result.SetFailure(ParseFailureKind.Format_BadDateTimeCalendar);
return false;
}
if (!GetDayOfYM(ref result, ref raw))
{
return false;
}
break;
case DS.TX_N:
// Deal hour + AM/PM
if (!GetTimeOfN(ref result, ref raw))
{
return false;
}
break;
case DS.TX_NN:
if (!GetTimeOfNN(ref result, ref raw))
{
return false;
}
break;
case DS.TX_NNN:
if (!GetTimeOfNNN(ref result, ref raw))
{
return false;
}
break;
default:
result.SetBadDateTimeFailure();
return false;
}
if (dps > DS.ERROR)
{
//
// We have reached a terminal state. Reset the raw num count.
//
raw.numCount = 0;
}
return true;
}
//
// A terminal state has been reached, call the appropriate function to fill in the parsing result.
// Return true if the state is a terminal state.
//
internal static bool ProcessTerminalState(DS dps, scoped ref DateTimeResult result, scoped ref DateTimeStyles styles, scoped ref DateTimeRawInfo raw, DateTimeFormatInfo dtfi)
{
bool passed = true;
switch (dps)
{
case DS.DX_NN:
passed = GetDayOfNN(ref result, ref styles, ref raw, dtfi);
break;
case DS.DX_NNN:
passed = GetDayOfNNN(ref result, ref raw, dtfi);
break;
case DS.DX_MN:
passed = GetDayOfMN(ref result, ref styles, ref raw, dtfi);
break;
case DS.DX_NM:
passed = GetDayOfNM(ref result, ref styles, ref raw, dtfi);
break;
case DS.DX_MNN:
passed = GetDayOfMNN(ref result, ref raw, dtfi);
break;
case DS.DX_DS:
// The result has got the correct value. No need to process.
passed = true;
break;
case DS.DX_YNN:
passed = GetDayOfYNN(ref result, ref raw, dtfi);
break;
case DS.DX_NNY:
passed = GetDayOfNNY(ref result, ref raw, dtfi);
break;
case DS.DX_YMN:
passed = GetDayOfYMN(ref result, ref raw);
break;
case DS.DX_YN:
passed = GetDayOfYN(ref result, ref raw);
break;
case DS.DX_YM:
passed = GetDayOfYM(ref result, ref raw);
break;
case DS.TX_N:
passed = GetTimeOfN(ref result, ref raw);
break;
case DS.TX_NN:
passed = GetTimeOfNN(ref result, ref raw);
break;
case DS.TX_NNN:
passed = GetTimeOfNNN(ref result, ref raw);
break;
case DS.TX_TS:
// The result has got the correct value. Nothing to do.
passed = true;
break;
case DS.DX_DSN:
passed = GetDateOfDSN(ref result, ref raw);
break;
case DS.DX_NDS:
passed = GetDateOfNDS(ref result, ref raw);
break;
case DS.DX_NNDS:
passed = GetDateOfNNDS(ref result, ref raw, dtfi);
break;
}
PTSTraceExit(dps, passed);
if (!passed)
{
return false;
}
if (dps > DS.ERROR)
{
//
// We have reached a terminal state. Reset the raw num count.
//
raw.numCount = 0;
}
return true;
}
internal static DateTime Parse(ReadOnlySpan<char> s, DateTimeFormatInfo dtfi, DateTimeStyles styles)
{
DateTimeResult result = default; // The buffer to store the parsing result.
result.Init(s);
if (TryParse(s, dtfi, styles, ref result))
{
return result.parsedDate;
}
else
{
throw GetDateTimeParseException(ref result);
}
}
internal static DateTime Parse(ReadOnlySpan<char> s, DateTimeFormatInfo dtfi, DateTimeStyles styles, out TimeSpan offset)
{
DateTimeResult result = default; // The buffer to store the parsing result.
result.Init(s);
result.flags |= ParseFlags.CaptureOffset;
if (TryParse(s, dtfi, styles, ref result))
{
offset = result.timeZoneOffset;
return result.parsedDate;
}
else
{
throw GetDateTimeParseException(ref result);
}
}
internal static bool TryParse(ReadOnlySpan<char> s, DateTimeFormatInfo dtfi, DateTimeStyles styles, out DateTime result)
{
DateTimeResult resultData = default; // The buffer to store the parsing result.
resultData.Init(s);
if (TryParse(s, dtfi, styles, ref resultData))
{
result = resultData.parsedDate;
return true;
}
result = DateTime.MinValue;
return false;
}
internal static bool TryParse(ReadOnlySpan<char> s, DateTimeFormatInfo dtfi, DateTimeStyles styles, out DateTime result, out TimeSpan offset)
{
DateTimeResult parseResult = default; // The buffer to store the parsing result.
parseResult.Init(s);
parseResult.flags |= ParseFlags.CaptureOffset;
if (TryParse(s, dtfi, styles, ref parseResult))
{
result = parseResult.parsedDate;
offset = parseResult.timeZoneOffset;
return true;
}
result = DateTime.MinValue;
offset = TimeSpan.Zero;
return false;
}
//
// This is the real method to do the parsing work.
//
internal static bool TryParse(ReadOnlySpan<char> s, DateTimeFormatInfo dtfi, DateTimeStyles styles, scoped ref DateTimeResult result)
{
if (s.Length == 0)
{
result.SetBadDateTimeFailure();
return false;
}
Debug.Assert(dtfi != null, "dtfi == null");
#if _LOGGING
DTFITrace(dtfi);
#endif
//
// First try the predefined format.
//
DS dps = DS.BEGIN; // Date Parsing State.
bool reachTerminalState = false;
DateTimeToken dtok = default; // The buffer to store the parsing token.
dtok.suffix = TokenType.SEP_Unk;
DateTimeRawInfo raw = default; // The buffer to store temporary parsing information.
unsafe
{
int* numberPointer = stackalloc int[3];
raw.Init(numberPointer);
}
raw.hasSameDateAndTimeSeparators = dtfi.DateSeparator.Equals(dtfi.TimeSeparator, StringComparison.Ordinal);
result.calendar = dtfi.Calendar;
result.era = Calendar.CurrentEra;
//
// The string to be parsed. Use a __DTString wrapper so that we can trace the index which
// indicates the beginning of next token.
//
__DTString str = new __DTString(s, dtfi);
str.GetNext();
//
// The following loop will break out when we reach the end of the str.
//
do
{
//
// Call the lexer to get the next token.
//
// If we find a era in Lex(), the era value will be in raw.era.
if (!Lex(dps, ref str, ref dtok, ref raw, ref result, ref dtfi, styles))
{
TPTraceExit("0000", dps);
return false;
}
//
// If the token is not unknown, process it.
// Otherwise, just discard it.
//
if (dtok.dtt != DTT.Unk)
{
//
// Check if we got any CJK Date/Time suffix.
// Since the Date/Time suffix tells us the number belongs to year/month/day/hour/minute/second,
// store the number in the appropriate field in the result.
//
if (dtok.suffix != TokenType.SEP_Unk)
{
if (!ProcessDateTimeSuffix(ref result, ref raw, ref dtok))
{
result.SetBadDateTimeFailure();
TPTraceExit("0010", dps);
return false;
}
dtok.suffix = TokenType.SEP_Unk; // Reset suffix to SEP_Unk;
}
if (dtok.dtt == DTT.NumLocalTimeMark)
{
if (dps == DS.D_YNd || dps == DS.D_YN)
{
// Consider this as ISO 8601 format:
// "yyyy-MM-dd'T'HH:mm:ss" 1999-10-31T02:00:00
TPTraceExit("0020", dps);
return ParseISO8601(ref raw, ref str, styles, ref result);
}
else
{
result.SetBadDateTimeFailure();
TPTraceExit("0030", dps);
return false;
}
}
if (raw.hasSameDateAndTimeSeparators)
{
if (dtok.dtt == DTT.YearEnd || dtok.dtt == DTT.YearSpace || dtok.dtt == DTT.YearDateSep)
{
// When time and date separators are same and we are hitting a year number while the first parsed part of the string was recognized
// as part of time (and not a date) DS.T_Nt, DS.T_NNt then change the state to be a date so we try to parse it as a date instead
if (dps == DS.T_Nt)
{
dps = DS.D_Nd;
}
if (dps == DS.T_NNt)
{
dps = DS.D_NNd;
}
}
bool atEnd = str.AtEnd();
if (s_dateParsingStates[(int)dps][(int)dtok.dtt] == DS.ERROR || atEnd)
{
switch (dtok.dtt)
{
// we have the case of Serbia have dates in forms 'd.M.yyyy.' so we can expect '.' after the date parts.
// changing the token to end with space instead of Date Separator will avoid failing the parsing.
case DTT.YearDateSep: dtok.dtt = atEnd ? DTT.YearEnd : DTT.YearSpace; break;
case DTT.NumDatesep: dtok.dtt = atEnd ? DTT.NumEnd : DTT.NumSpace; break;
case DTT.NumTimesep: dtok.dtt = atEnd ? DTT.NumEnd : DTT.NumSpace; break;
case DTT.MonthDatesep: dtok.dtt = atEnd ? DTT.MonthEnd : DTT.MonthSpace; break;
}
}
}
//
// Advance to the next state, and continue
//
dps = s_dateParsingStates[(int)dps][(int)dtok.dtt];
if (dps == DS.ERROR)
{
result.SetBadDateTimeFailure();
TPTraceExit("0040 (invalid state transition)", dps);
return false;
}
else if (dps > DS.ERROR)
{
if ((dtfi.FormatFlags & DateTimeFormatFlags.UseHebrewRule) != 0)
{
if (!ProcessHebrewTerminalState(dps, ref result, ref styles, ref raw, dtfi))
{
TPTraceExit("0050 (ProcessHebrewTerminalState)", dps);
return false;
}
}
else
{
if (!ProcessTerminalState(dps, ref result, ref styles, ref raw, dtfi))
{
TPTraceExit("0060 (ProcessTerminalState)", dps);
return false;
}
}
reachTerminalState = true;
//
// If we have reached a terminal state, start over from DS.BEGIN again.
// For example, when we parsed "1999-12-23 13:30", we will reach a terminal state at "1999-12-23",
// and we start over so we can continue to parse "12:30".
//
dps = DS.BEGIN;
}
}
} while (dtok.dtt != DTT.End && dtok.dtt != DTT.NumEnd && dtok.dtt != DTT.MonthEnd);
if (!reachTerminalState)
{
result.SetBadDateTimeFailure();
TPTraceExit("0070 (did not reach terminal state)", dps);
return false;
}
AdjustTimeMark(dtfi, ref raw);
if (!AdjustHour(ref result.Hour, raw.timeMark))
{
result.SetBadDateTimeFailure();
TPTraceExit("0080 (AdjustHour)", dps);
return false;
}
// Check if the parsed string only contains hour/minute/second values.
bool bTimeOnly = (result.Year == -1 && result.Month == -1 && result.Day == -1);
//
// Check if any year/month/day is missing in the parsing string.
// If yes, get the default value from today's date.
//
if (!CheckDefaultDateTime(ref result, ref result.calendar, styles))
{
TPTraceExit("0090 (failed to fill in missing year/month/day defaults)", dps);
return false;
}
if (!result.calendar.TryToDateTime(result.Year, result.Month, result.Day,
result.Hour, result.Minute, result.Second, 0, result.era, out DateTime time))
{
result.SetFailure(ParseFailureKind.Format_BadDateTimeCalendar);
TPTraceExit("0100 (result.calendar.TryToDateTime)", dps);
return false;
}
if (raw.fraction > 0)
{
if (!time.TryAddTicks((long)Math.Round(raw.fraction * TimeSpan.TicksPerSecond), out time))
{
result.SetBadDateTimeFailure();
TPTraceExit("0100 (time.TryAddTicks)", dps);
return false;
}
}
//
// We have to check day of week before we adjust to the time zone.
// Otherwise, the value of day of week may change after adjusting to the time zone.
//
if (raw.dayOfWeek != -1)
{
//
// Check if day of week is correct.
//
if (raw.dayOfWeek != (int)result.calendar.GetDayOfWeek(time))
{
result.SetFailure(ParseFailureKind.Format_BadDayOfWeek);
TPTraceExit("0110 (dayOfWeek check)", dps);
return false;
}
}
result.parsedDate = time;
if (!DetermineTimeZoneAdjustments(ref result, styles, bTimeOnly))
{
TPTraceExit("0120 (DetermineTimeZoneAdjustments)", dps);
return false;
}
TPTraceExit("0130 (success)", dps);
return true;
}
// Handles time zone adjustments and sets DateTimeKind values as required by the styles
private static bool DetermineTimeZoneAdjustments(ref DateTimeResult result, DateTimeStyles styles, bool bTimeOnly)
{
if ((result.flags & ParseFlags.CaptureOffset) != 0)
{
// This is a DateTimeOffset parse, so the offset will actually be captured directly, and
// no adjustment is required in most cases
return DateTimeOffsetTimeZonePostProcessing(ref result, styles);
}
else
{
long offsetTicks = result.timeZoneOffset.Ticks;
// the DateTime offset must be within +- 14:00 hours.
if (offsetTicks < DateTimeOffset.MinOffset || offsetTicks > DateTimeOffset.MaxOffset)
{
result.SetFailure(ParseFailureKind.Format_OffsetOutOfRange);
return false;
}
}
// The flags AssumeUniveral and AssumeLocal only apply when the input does not have a time zone
if ((result.flags & ParseFlags.TimeZoneUsed) == 0)
{
// If AssumeLocal or AssumeLocal is used, there will always be a kind specified. As in the
// case when a time zone is present, it will default to being local unless AdjustToUniversal
// is present. These comparisons determine whether setting the kind is sufficient, or if a
// time zone adjustment is required. For consistentcy with the rest of parsing, it is desirable
// to fall through to the Adjust methods below, so that there is consist handling of boundary
// cases like wrapping around on time-only dates and temporarily allowing an adjusted date
// to exceed DateTime.MaxValue
if ((styles & DateTimeStyles.AssumeLocal) != 0)
{
if ((styles & DateTimeStyles.AdjustToUniversal) != 0)
{
result.flags |= ParseFlags.TimeZoneUsed;
result.timeZoneOffset = TimeZoneInfo.GetLocalUtcOffset(result.parsedDate, TimeZoneInfoOptions.NoThrowOnInvalidTime);
}
else
{
result.parsedDate = DateTime.SpecifyKind(result.parsedDate, DateTimeKind.Local);
return true;
}
}
else if ((styles & DateTimeStyles.AssumeUniversal) != 0)
{
if ((styles & DateTimeStyles.AdjustToUniversal) != 0)
{
result.parsedDate = DateTime.SpecifyKind(result.parsedDate, DateTimeKind.Utc);
return true;
}
else
{
result.flags |= ParseFlags.TimeZoneUsed;
result.timeZoneOffset = TimeSpan.Zero;
}
}
else
{
// No time zone and no Assume flags, so DateTimeKind.Unspecified is fine
Debug.Assert(result.parsedDate.Kind == DateTimeKind.Unspecified);
return true;
}
}
if (((styles & DateTimeStyles.RoundtripKind) != 0) && ((result.flags & ParseFlags.TimeZoneUtc) != 0))
{
result.parsedDate = DateTime.SpecifyKind(result.parsedDate, DateTimeKind.Utc);
return true;
}
if ((styles & DateTimeStyles.AdjustToUniversal) != 0)
{
return AdjustTimeZoneToUniversal(ref result);
}
return AdjustTimeZoneToLocal(ref result, bTimeOnly);
}
// Apply validation and adjustments specific to DateTimeOffset
private static bool DateTimeOffsetTimeZonePostProcessing(ref DateTimeResult result, DateTimeStyles styles)
{
// For DateTimeOffset, default to the Utc or Local offset when an offset was not specified by
// the input string.
if ((result.flags & ParseFlags.TimeZoneUsed) == 0)
{
if ((styles & DateTimeStyles.AssumeUniversal) != 0)
{
// AssumeUniversal causes the offset to default to zero (0)
result.timeZoneOffset = TimeSpan.Zero;
}
else
{
// AssumeLocal causes the offset to default to Local. This flag is on by default for DateTimeOffset.
result.timeZoneOffset = TimeZoneInfo.GetLocalUtcOffset(result.parsedDate, TimeZoneInfoOptions.NoThrowOnInvalidTime);
}
}
long offsetTicks = result.timeZoneOffset.Ticks;
// there should be no overflow, because the offset can be no more than -+100 hours and the date already
// fits within a DateTime.
long utcTicks = result.parsedDate.Ticks - offsetTicks;
// For DateTimeOffset, both the parsed time and the corresponding UTC value must be within the boundaries
// of a DateTime instance.
if (utcTicks < DateTime.MinTicks || utcTicks > DateTime.MaxTicks)
{
result.SetFailure(ParseFailureKind.Format_UTCOutOfRange);
return false;
}
// the offset must be within +- 14:00 hours.
if (offsetTicks < DateTimeOffset.MinOffset || offsetTicks > DateTimeOffset.MaxOffset)
{
result.SetFailure(ParseFailureKind.Format_OffsetOutOfRange);
return false;
}
// DateTimeOffset should still honor the AdjustToUniversal flag for consistency with DateTime. It means you
// want to return an adjusted UTC value, so store the utcTicks in the DateTime and set the offset to zero
if ((styles & DateTimeStyles.AdjustToUniversal) != 0)
{
if (((result.flags & ParseFlags.TimeZoneUsed) == 0) && ((styles & DateTimeStyles.AssumeUniversal) == 0))
{
// Handle the special case where the timeZoneOffset was defaulted to Local
bool toUtcResult = AdjustTimeZoneToUniversal(ref result);
result.timeZoneOffset = TimeSpan.Zero;
return toUtcResult;
}
// The constructor should always succeed because of the range check earlier in the function
// Although it is UTC, internally DateTimeOffset does not use this flag
result.parsedDate = new DateTime(utcTicks, DateTimeKind.Utc);
result.timeZoneOffset = TimeSpan.Zero;
}
return true;
}
//
// Adjust the specified time to universal time based on the supplied timezone.
// E.g. when parsing "2001/06/08 14:00-07:00",
// the time is 2001/06/08 14:00, and timeZoneOffset = -07:00.
// The result will be "2001/06/08 21:00"
//
private static bool AdjustTimeZoneToUniversal(ref DateTimeResult result)
{
long resultTicks = result.parsedDate.Ticks;
resultTicks -= result.timeZoneOffset.Ticks;
if (resultTicks < 0)
{
resultTicks += TimeSpan.TicksPerDay;
}
if (resultTicks < DateTime.MinTicks || resultTicks > DateTime.MaxTicks)
{
result.SetFailure(ParseFailureKind.Format_DateOutOfRange);
return false;
}
result.parsedDate = new DateTime(resultTicks, DateTimeKind.Utc);
return true;
}
//
// Adjust the specified time to universal time based on the supplied timezone,
// and then convert to local time.
// E.g. when parsing "2001/06/08 14:00-04:00", and local timezone is GMT-7.
// the time is 2001/06/08 14:00, and timeZoneOffset = -05:00.
// The result will be "2001/06/08 11:00"
//
private static bool AdjustTimeZoneToLocal(ref DateTimeResult result, bool bTimeOnly)
{
long resultTicks = result.parsedDate.Ticks;
// Convert to local ticks
TimeZoneInfo tz = TimeZoneInfo.Local;
bool isAmbiguousLocalDst = false;
if (resultTicks < TimeSpan.TicksPerDay)
{
//
// This is time of day.
//
// Adjust timezone.
resultTicks -= result.timeZoneOffset.Ticks;
// If the time is time of day, use the current timezone offset.
resultTicks += tz.GetUtcOffset(bTimeOnly ? DateTime.Now : result.parsedDate, TimeZoneInfoOptions.NoThrowOnInvalidTime).Ticks;
if (resultTicks < 0)
{
resultTicks += TimeSpan.TicksPerDay;
}
}
else
{
// Adjust timezone to GMT.
resultTicks -= result.timeZoneOffset.Ticks;
if (resultTicks < DateTime.MinTicks || resultTicks > DateTime.MaxTicks)
{
// If the result ticks is greater than DateTime.MaxValue, we can not create a DateTime from this ticks.
// In this case, keep using the old code.
resultTicks += tz.GetUtcOffset(result.parsedDate, TimeZoneInfoOptions.NoThrowOnInvalidTime).Ticks;
}
else
{
// Convert the GMT time to local time.
DateTime utcDt = new DateTime(resultTicks, DateTimeKind.Utc);
resultTicks += TimeZoneInfo.GetUtcOffsetFromUtc(utcDt, TimeZoneInfo.Local, out _, out isAmbiguousLocalDst).Ticks;
}
}
if (resultTicks < DateTime.MinTicks || resultTicks > DateTime.MaxTicks)
{
result.parsedDate = DateTime.MinValue;
result.SetFailure(ParseFailureKind.Format_DateOutOfRange);
return false;
}
result.parsedDate = new DateTime(resultTicks, DateTimeKind.Local, isAmbiguousLocalDst);
return true;
}
//
// Parse the ISO8601 format string found during Parse();
//
//
private static bool ParseISO8601(scoped ref DateTimeRawInfo raw, ref __DTString str, DateTimeStyles styles, scoped ref DateTimeResult result)
{
str.Index--;
int second = 0;
double partSecond = 0;
str.SkipWhiteSpaces();
if (!ParseDigits(ref str, 2, out int hour))
{
result.SetBadDateTimeFailure();
return false;
}
str.SkipWhiteSpaces();
if (!str.Match(TimeDelimiter))
{
result.SetBadDateTimeFailure();
return false;
}
str.SkipWhiteSpaces();
if (!ParseDigits(ref str, 2, out int minute))
{
result.SetBadDateTimeFailure();
return false;
}
str.SkipWhiteSpaces();
if (str.Match(TimeDelimiter))
{
str.SkipWhiteSpaces();
if (!ParseDigits(ref str, 2, out second))
{
result.SetBadDateTimeFailure();
return false;
}
if ((str.Match(TimeFractionDelimiterDot))
|| (str.Match(TimeFractionDelimiterComma)))
{
if (!ParseFraction(ref str, out partSecond))
{
result.SetBadDateTimeFailure();
return false;
}
str.Index--;
}
str.SkipWhiteSpaces();
}
if (str.GetNext())
{
char ch = str.GetChar();
if (ch == '+' || ch == '-')
{
result.flags |= ParseFlags.TimeZoneUsed;
if (!ParseTimeZone(ref str, ref result.timeZoneOffset))
{
result.SetBadDateTimeFailure();
return false;
}
str.Index--;
}
else if (ch == 'Z' || ch == 'z')
{
result.flags |= ParseFlags.TimeZoneUsed;
result.timeZoneOffset = TimeSpan.Zero;
result.flags |= ParseFlags.TimeZoneUtc;
}
else
{
str.Index--;
}
str.SkipWhiteSpaces();
if (str.Match('#'))
{
if (!VerifyValidPunctuation(ref str))
{
result.SetBadDateTimeFailure();
return false;
}
str.SkipWhiteSpaces();
}
if (str.Match('\0'))
{
if (!VerifyValidPunctuation(ref str))
{
result.SetBadDateTimeFailure();
return false;
}
}
if (str.GetNext())
{
// If this is true, there were non-white space characters remaining in the DateTime
result.SetBadDateTimeFailure();
return false;
}
}
Calendar calendar = GregorianCalendar.GetDefaultInstance();
if (!calendar.TryToDateTime(raw.year, raw.GetNumber(0), raw.GetNumber(1),
hour, minute, second, 0, result.era, out DateTime time))
{
result.SetFailure(ParseFailureKind.Format_BadDateTimeCalendar);
return false;
}
if (!time.TryAddTicks((long)Math.Round(partSecond * TimeSpan.TicksPerSecond), out time))
{
result.SetBadDateTimeFailure();
return false;
}
result.parsedDate = time;
return DetermineTimeZoneAdjustments(ref result, styles, false);
}
////////////////////////////////////////////////////////////////////////
//
// Actions:
// Parse the current word as a Hebrew number.
// This is used by DateTime.ParseExact().
//
////////////////////////////////////////////////////////////////////////
internal static bool MatchHebrewDigits(ref __DTString str, out int number)
{
number = 0;
// Create a context object so that we can parse the Hebrew number text character by character.
HebrewNumberParsingContext context = new HebrewNumberParsingContext(0);
// Set this to ContinueParsing so that we will run the following while loop in the first time.
HebrewNumberParsingState state = HebrewNumberParsingState.ContinueParsing;
while (state == HebrewNumberParsingState.ContinueParsing && str.GetNext())
{
state = HebrewNumber.ParseByChar(str.GetChar(), ref context);
}
if (state == HebrewNumberParsingState.FoundEndOfHebrewNumber)
{
// If we have reached a terminal state, update the result and returns.
number = context.result;
return true;
}
// If we run out of the character before reaching FoundEndOfHebrewNumber, or
// the state is InvalidHebrewNumber or ContinueParsing, we fail to match a Hebrew number.
// Return an error.
return false;
}
/*=================================ParseDigits==================================
**Action: Parse the number string in __DTString that are formatted using
** the following patterns:
** "0", "00", and "000..0"
**Returns: the integer value
**Arguments: str: a __DTString. The parsing will start from the
** next character after str.Index.
**Exceptions: FormatException if error in parsing number.
==============================================================================*/
internal static bool ParseDigits(ref __DTString str, int digitLen, out int result)
{
if (digitLen == 1)
{
// 1 really means 1 or 2 for this call
return ParseDigits(ref str, 1, 2, out result);
}
else
{
return ParseDigits(ref str, digitLen, digitLen, out result);
}
}
internal static bool ParseDigits(ref __DTString str, int minDigitLen, int maxDigitLen, out int result)
{
Debug.Assert(minDigitLen > 0);
Debug.Assert(maxDigitLen < 9);
Debug.Assert(minDigitLen <= maxDigitLen);
int localResult = 0;
int startingIndex = str.Index;
int tokenLength = 0;
while (tokenLength < maxDigitLen)
{
if (!str.GetNextDigit())
{
str.Index--;
break;
}
localResult = localResult * 10 + str.GetDigit();
tokenLength++;
}
result = localResult;
if (tokenLength < minDigitLen)
{
str.Index = startingIndex;
return false;
}
return true;
}
/*=================================ParseFractionExact==================================
**Action: Parse the number string in __DTString that are formatted using
** the following patterns:
** "0", "00", and "000..0"
**Returns: the fraction value
**Arguments: str: a __DTString. The parsing will start from the
** next character after str.Index.
**Exceptions: FormatException if error in parsing number.
==============================================================================*/
private static bool ParseFractionExact(ref __DTString str, int maxDigitLen, scoped ref double result)
{
Debug.Assert(maxDigitLen <= DateTimeFormat.MaxSecondsFractionDigits);
if (!str.GetNextDigit())
{
str.Index--;
return false;
}
result = str.GetDigit();
int digitLen = 1;
for (; digitLen < maxDigitLen; digitLen++)
{
if (!str.GetNextDigit())
{
str.Index--;
break;
}
result = result * 10 + str.GetDigit();
}
result /= TimeSpanParse.Pow10UpToMaxFractionDigits(digitLen);
return digitLen == maxDigitLen;
}
/*=================================ParseSign==================================
**Action: Parse a positive or a negative sign.
**Returns: true if positive sign. false if negative sign.
**Arguments: str: a __DTString. The parsing will start from the
** next character after str.Index.
**Exceptions: FormatException if end of string is encountered or a sign
** symbol is not found.
==============================================================================*/
private static bool ParseSign(ref __DTString str, scoped ref bool result)
{
if (!str.GetNext())
{
// A sign symbol ('+' or '-') is expected. However, end of string is encountered.
return false;
}
char ch = str.GetChar();
if (ch == '+')
{
result = true;
return true;
}
else if (ch == '-')
{
result = false;
return true;
}
// A sign symbol ('+' or '-') is expected.
return false;
}
/*=================================ParseTimeZoneOffset==================================
**Action: Parse the string formatted using "z", "zz", "zzz" in DateTime.Format().
**Returns: the TimeSpan for the parsed timezone offset.
**Arguments: str: a __DTString. The parsing will start from the
** next character after str.Index.
** len: the repeated number of the "z"
**Exceptions: FormatException if errors in parsing.
==============================================================================*/
private static bool ParseTimeZoneOffset(ref __DTString str, int len, scoped ref TimeSpan result)
{
bool isPositive = true;
int hourOffset;
int minuteOffset = 0;
switch (len)
{
case 1:
case 2:
if (!ParseSign(ref str, ref isPositive))
{
return false;
}
if (!ParseDigits(ref str, len, out hourOffset))
{
return false;
}
break;
default:
if (!ParseSign(ref str, ref isPositive))
{
return false;
}
// Parsing 1 digit will actually parse 1 or 2.
if (!ParseDigits(ref str, 1, out hourOffset))
{
return false;
}
// ':' is optional.
if (str.Match(":"))
{
// Found ':'
if (!ParseDigits(ref str, 2, out minuteOffset))
{
return false;
}
}
else
{
// Since we can not match ':', put the char back.
str.Index--;
if (!ParseDigits(ref str, 2, out minuteOffset))
{
return false;
}
}
break;
}
if (minuteOffset < 0 || minuteOffset >= 60)
{
return false;
}
result = (new TimeSpan(hourOffset, minuteOffset, 0));
if (!isPositive)
{
result = result.Negate();
}
return true;
}
/// Determines if a format string contains a day-of-month specifier ('d' or 'dd').
/// Properly handles quoted sections and escape characters.
private static bool FormatContainsDayOfMonthSpecifier(ReadOnlySpan<char> format)
{
if (format.IsEmpty)
{
return false;
}
bool inQuote = false;
for (int i = 0; i < format.Length; i++)
{
char ch = format[i];
// Skip the next character if it's escaped
if (ch == '\\' || ch == '%')
{
i++;
continue;
}
// Toggle quote state
if (ch == '\'' || ch == '"')
{
inQuote = !inQuote;
continue;
}
// Only check for 'd' when not in quotes
if (!inQuote && ch == 'd')
{
// Make sure it's a day-of-month specifier (d or dd)
// and not a day-of-week specifier (ddd or dddd)
int repeatCount = 1;
while (i + 1 < format.Length && format[i + 1] == 'd')
{
repeatCount++;
i++;
}
// Only day-of-month specifiers (d or dd) trigger genitive case
if (repeatCount <= 2)
{
return true;
}
}
}
return false;
}
/*=================================MatchAbbreviatedMonthName==================================
**Action: Parse the abbreviated month name from string starting at str.Index.
**Returns: A value from 1 to 12 for the first month to the twelfth month.
**Arguments: str: a __DTString. The parsing will start from the
** next character after str.Index.
**Exceptions: FormatException if an abbreviated month name can not be found.
==============================================================================*/
private static bool MatchAbbreviatedMonthName(ref __DTString str, DateTimeFormatInfo dtfi, scoped ref int result, ReadOnlySpan<char> format)
{
int maxMatchStrLen = 0;
result = -1;
if (str.GetNext())
{
if (ReferenceEquals(dtfi, DateTimeFormat.InvariantFormatInfo))
{
// Invariant data. Do a fast lookup on the known abbreviated month names.
ReadOnlySpan<char> span = str.Value.Slice(str.Index);
if (span.Length >= 3)
{
uint m0 = span[0], m1 = span[1], m2 = span[2];
if ((m0 | m1 | m2) <= 0x7F)
{
// Combine all the characters into a single uint, lowercased.
maxMatchStrLen = 3; // assume we'll successfully match
switch ((m0 << 16) | (m1 << 8) | m2 | 0x202020)
{
case 0x6a616e: /* 'jan' */ result = 1; break;
case 0x666562: /* 'feb' */ result = 2; break;
case 0x6d6172: /* 'mar' */ result = 3; break;
case 0x617072: /* 'apr' */ result = 4; break;
case 0x6d6179: /* 'may' */ result = 5; break;
case 0x6a756e: /* 'jun' */ result = 6; break;
case 0x6a756c: /* 'jul' */ result = 7; break;
case 0x617567: /* 'aug' */ result = 8; break;
case 0x736570: /* 'sep' */ result = 9; break;
case 0x6f6374: /* 'oct' */ result = 10; break;
case 0x6e6f76: /* 'nov' */ result = 11; break;
case 0x646563: /* 'dec' */ result = 12; break;
default: maxMatchStrLen = 0; break; // undo match assumption
}
}
}
}
else
{
// Scan the month names (note that some calendars has 13 months) and find
// the matching month name which has the max string length.
// We need to do this because some cultures which have abbreviated
// month names with the same prefix (e.g. "vi-VN" culture has those conflicts "Thg1", "Thg10", "Thg11")
int monthsInYear = (dtfi.GetAbbreviatedMonthName(13).Length == 0 ? 12 : 13);
for (int i = 1; i <= monthsInYear; i++)
{
string searchStr = dtfi.GetAbbreviatedMonthName(i);
int matchStrLen = searchStr.Length;
if (dtfi.HasSpacesInMonthNames
? str.MatchSpecifiedWords(searchStr, false, ref matchStrLen)
: str.MatchSpecifiedWord(searchStr))
{
if (matchStrLen > maxMatchStrLen)
{
maxMatchStrLen = matchStrLen;
result = i;
}
}
}
}
// Search genitive form only if the format contains a day-of-month specifier
if ((dtfi.FormatFlags & DateTimeFormatFlags.UseGenitiveMonth) != 0 && FormatContainsDayOfMonthSpecifier(format))
{
int tempResult = str.MatchLongestWords(dtfi.InternalGetGenitiveMonthNames(abbreviated: true), ref maxMatchStrLen);
// We found a longer match in the genitive month name. Use this as the result.
// tempResult + 1 should be the month value.
if (tempResult >= 0)
{
result = tempResult + 1;
}
}
// Search leap year form.
if ((dtfi.FormatFlags & DateTimeFormatFlags.UseLeapYearMonth) != 0)
{
int tempResult = str.MatchLongestWords(dtfi.InternalGetLeapYearMonthNames(), ref maxMatchStrLen);
// We found a longer match in the leap year month name. Use this as the result.
// The result from MatchLongestWords is 0 ~ length of word array.
// So we increment the result by one to become the month value.
if (tempResult >= 0)
{
result = tempResult + 1;
}
}
}
if (result > 0)
{
str.Index += (maxMatchStrLen - 1);
return true;
}
return false;
}
/*=================================MatchMonthName==================================
**Action: Parse the month name from string starting at str.Index.
**Returns: A value from 1 to 12 indicating the first month to the twelfth month.
**Arguments: str: a __DTString. The parsing will start from the
** next character after str.Index.
**Exceptions: FormatException if a month name can not be found.
==============================================================================*/
private static bool MatchMonthName(ref __DTString str, DateTimeFormatInfo dtfi, scoped ref int result, ReadOnlySpan<char> format)
{
int maxMatchStrLen = 0;
result = -1;
if (str.GetNext())
{
if (ReferenceEquals(dtfi, DateTimeFormat.InvariantFormatInfo))
{
// Invariant data. Do a fast lookup on the known month names.
ReadOnlySpan<char> span = str.Value.Slice(str.Index);
if (span.Length >= 3)
{
uint m0 = span[0], m1 = span[1], m2 = span[2];
if ((m0 | m1 | m2) <= 0x7F)
{
// Combine all the characters into a single uint, lowercased.
switch ((m0 << 16) | (m1 << 8) | m2 | 0x202020)
{
case 0x6a616e: /* 'jan' */ SetIfStartsWith(span, "January", 1, ref result, ref maxMatchStrLen); break;
case 0x666562: /* 'feb' */ SetIfStartsWith(span, "February", 2, ref result, ref maxMatchStrLen); break;
case 0x6d6172: /* 'mar' */ SetIfStartsWith(span, "March", 3, ref result, ref maxMatchStrLen); break;
case 0x617072: /* 'apr' */ SetIfStartsWith(span, "April", 4, ref result, ref maxMatchStrLen); break;
case 0x6d6179: /* 'may' */ SetIfStartsWith(span, "May", 5, ref result, ref maxMatchStrLen); break;
case 0x6a756e: /* 'jun' */ SetIfStartsWith(span, "June", 6, ref result, ref maxMatchStrLen); break;
case 0x6a756c: /* 'jul' */ SetIfStartsWith(span, "July", 7, ref result, ref maxMatchStrLen); break;
case 0x617567: /* 'aug' */ SetIfStartsWith(span, "August", 8, ref result, ref maxMatchStrLen); break;
case 0x736570: /* 'sep' */ SetIfStartsWith(span, "September", 9, ref result, ref maxMatchStrLen); break;
case 0x6f6374: /* 'oct' */ SetIfStartsWith(span, "October", 10, ref result, ref maxMatchStrLen); break;
case 0x6e6f76: /* 'nov' */ SetIfStartsWith(span, "November", 11, ref result, ref maxMatchStrLen); break;
case 0x646563: /* 'dec' */ SetIfStartsWith(span, "December", 12, ref result, ref maxMatchStrLen); break;
}
}
}
}
else
{
// Scan the month names (note that some calendars has 13 months) and find
// the matching month name which has the max string length.
// We need to do this because some cultures (e.g. "vi-VN") which have
// month names with the same prefix.
int monthsInYear = (dtfi.GetMonthName(13).Length == 0 ? 12 : 13);
for (int i = 1; i <= monthsInYear; i++)
{
string searchStr = dtfi.GetMonthName(i);
int matchStrLen = searchStr.Length;
if (dtfi.HasSpacesInMonthNames
? str.MatchSpecifiedWords(searchStr, false, ref matchStrLen)
: str.MatchSpecifiedWord(searchStr))
{
if (matchStrLen > maxMatchStrLen)
{
maxMatchStrLen = matchStrLen;
result = i;
}
}
}
}
// Search genitive form.
if ((dtfi.FormatFlags & DateTimeFormatFlags.UseGenitiveMonth) != 0 && FormatContainsDayOfMonthSpecifier(format))
{
int tempResult = str.MatchLongestWords(dtfi.InternalGetGenitiveMonthNames(abbreviated: false), ref maxMatchStrLen);
// We found a longer match in the genitive month name. Use this as the result.
// The result from MatchLongestWords is 0 ~ length of word array.
// So we increment the result by one to become the month value.
if (tempResult >= 0)
{
result = tempResult + 1;
}
}
// Search leap year form.
if ((dtfi.FormatFlags & DateTimeFormatFlags.UseLeapYearMonth) != 0)
{
int tempResult = str.MatchLongestWords(dtfi.InternalGetLeapYearMonthNames(), ref maxMatchStrLen);
// We found a longer match in the leap year month name. Use this as the result.
// The result from MatchLongestWords is 0 ~ length of word array.
// So we increment the result by one to become the month value.
if (tempResult >= 0)
{
result = tempResult + 1;
}
}
}
if (result > 0)
{
str.Index += (maxMatchStrLen - 1);
return true;
}
return false;
}
/*=================================MatchAbbreviatedDayName==================================
**Action: Parse the abbreviated day of week name from string starting at str.Index.
**Returns: A value from 0 to 6 indicating Sunday to Saturday.
**Arguments: str: a __DTString. The parsing will start from the
** next character after str.Index.
**Exceptions: FormatException if a abbreviated day of week name can not be found.
==============================================================================*/
private static bool MatchAbbreviatedDayName(ref __DTString str, DateTimeFormatInfo dtfi, scoped ref int result)
{
int maxMatchStrLen = 0;
result = -1;
if (str.GetNext())
{
if (ReferenceEquals(dtfi, DateTimeFormat.InvariantFormatInfo))
{
// Invariant data. Do a fast lookup on the known abbreviated day names.
ReadOnlySpan<char> span = str.Value.Slice(str.Index);
if (span.Length >= 3)
{
uint d0 = span[0], d1 = span[1], d2 = span[2];
if ((d0 | d1 | d2) <= 0x7F)
{
// Combine all the characters into a single uint, lowercased.
maxMatchStrLen = 3; // assume we'll successfully match
switch ((d0 << 16) | (d1 << 8) | d2 | 0x202020)
{
case 0x73756E /* 'sun' */: result = 0; break;
case 0x6d6f6e /* 'mon' */: result = 1; break;
case 0x747565 /* 'tue' */: result = 2; break;
case 0x776564 /* 'wed' */: result = 3; break;
case 0x746875 /* 'thu' */: result = 4; break;
case 0x667269 /* 'fri' */: result = 5; break;
case 0x736174 /* 'sat' */: result = 6; break;
default: maxMatchStrLen = 0; break; // undo match assumption
}
}
}
}
else
{
for (DayOfWeek i = DayOfWeek.Sunday; i <= DayOfWeek.Saturday; i++)
{
string searchStr = dtfi.GetAbbreviatedDayName(i);
int matchStrLen = searchStr.Length;
if (dtfi.HasSpacesInDayNames
? str.MatchSpecifiedWords(searchStr, false, ref matchStrLen)
: str.MatchSpecifiedWord(searchStr))
{
if (matchStrLen > maxMatchStrLen)
{
maxMatchStrLen = matchStrLen;
result = (int)i;
}
}
}
}
}
if (result >= 0)
{
str.Index += maxMatchStrLen - 1;
return true;
}
return false;
}
/*=================================MatchDayName==================================
**Action: Parse the day of week name from string starting at str.Index.
**Returns: A value from 0 to 6 indicating Sunday to Saturday.
**Arguments: str: a __DTString. The parsing will start from the
** next character after str.Index.
**Exceptions: FormatException if a day of week name can not be found.
==============================================================================*/
private static bool MatchDayName(ref __DTString str, DateTimeFormatInfo dtfi, scoped ref int result)
{
// Turkish (tr-TR) got day names with the same prefix.
int maxMatchStrLen = 0;
result = -1;
if (str.GetNext())
{
if (ReferenceEquals(dtfi, DateTimeFormat.InvariantFormatInfo))
{
// Invariant data. Do a fast lookup on the known day names.
ReadOnlySpan<char> span = str.Value.Slice(str.Index);
if (span.Length >= 3)
{
uint d0 = span[0], d1 = span[1], d2 = span[2];
if ((d0 | d1 | d2) <= 0x7F)
{
// Combine all the characters into a single uint, lowercased.
switch ((d0 << 16) | (d1 << 8) | d2 | 0x202020)
{
case 0x73756E /* 'sun' */: SetIfStartsWith(span, "Sunday", 0, ref result, ref maxMatchStrLen); break;
case 0x6d6f6e /* 'mon' */: SetIfStartsWith(span, "Monday", 1, ref result, ref maxMatchStrLen); break;
case 0x747565 /* 'tue' */: SetIfStartsWith(span, "Tuesday", 2, ref result, ref maxMatchStrLen); break;
case 0x776564 /* 'wed' */: SetIfStartsWith(span, "Wednesday", 3, ref result, ref maxMatchStrLen); break;
case 0x746875 /* 'thu' */: SetIfStartsWith(span, "Thursday", 4, ref result, ref maxMatchStrLen); break;
case 0x667269 /* 'fri' */: SetIfStartsWith(span, "Friday", 5, ref result, ref maxMatchStrLen); break;
case 0x736174 /* 'sat' */: SetIfStartsWith(span, "Saturday", 6, ref result, ref maxMatchStrLen); break;
}
}
}
}
else
{
for (DayOfWeek i = DayOfWeek.Sunday; i <= DayOfWeek.Saturday; i++)
{
string searchStr = dtfi.GetDayName(i);
int matchStrLen = searchStr.Length;
if (dtfi.HasSpacesInDayNames
? str.MatchSpecifiedWords(searchStr, false, ref matchStrLen)
: str.MatchSpecifiedWord(searchStr))
{
if (matchStrLen > maxMatchStrLen)
{
maxMatchStrLen = matchStrLen;
result = (int)i;
}
}
}
}
}
if (result >= 0)
{
str.Index += maxMatchStrLen - 1;
return true;
}
return false;
}
/// <summary>
/// Sets <paramref name="result"/> to <paramref name="matchResult"/> and <paramref name="maxMatchStrLen"/> to <paramref name="match"/>'s Length
/// if <paramref name="span"/> starts with <paramref name="match"/> with an ordinal ignore-case comparison.
/// </summary>
[MethodImpl(MethodImplOptions.AggressiveInlining)] // exposes StartsWith to constant `match`
private static void SetIfStartsWith(ReadOnlySpan<char> span, [ConstantExpected] string match, int matchResult, scoped ref int result, ref int maxMatchStrLen)
{
if (span.StartsWith(match, StringComparison.OrdinalIgnoreCase))
{
result = matchResult;
maxMatchStrLen = match.Length;
}
}
/*=================================MatchEraName==================================
**Action: Parse era name from string starting at str.Index.
**Returns: An era value.
**Arguments: str: a __DTString. The parsing will start from the
** next character after str.Index.
**Exceptions: FormatException if an era name can not be found.
==============================================================================*/
private static bool MatchEraName(ref __DTString str, DateTimeFormatInfo dtfi, scoped ref int result)
{
if (str.GetNext())
{
int[] eras = dtfi.Calendar.Eras;
if (eras != null)
{
for (int i = 0; i < eras.Length; i++)
{
string searchStr = dtfi.GetEraName(eras[i]);
if (str.MatchSpecifiedWord(searchStr))
{
str.Index += (searchStr.Length - 1);
result = eras[i];
return true;
}
searchStr = dtfi.GetAbbreviatedEraName(eras[i]);
if (str.MatchSpecifiedWord(searchStr))
{
str.Index += (searchStr.Length - 1);
result = eras[i];
return true;
}
}
}
}
return false;
}
/*=================================MatchTimeMark==================================
**Action: Parse the time mark (AM/PM) from string starting at str.Index.
**Returns: TM_AM or TM_PM.
**Arguments: str: a __DTString. The parsing will start from the
** next character after str.Index.
**Exceptions: FormatException if a time mark can not be found.
==============================================================================*/
private static bool MatchTimeMark(ref __DTString str, DateTimeFormatInfo dtfi, scoped ref TM result)
{
result = TM.NotSet;
// In some cultures have empty strings in AM/PM mark. E.g. af-ZA (0x0436), the AM mark is "", and PM mark is "nm".
if (dtfi.AMDesignator.Length == 0)
{
result = TM.AM;
}
if (dtfi.PMDesignator.Length == 0)
{
result = TM.PM;
}
if (str.GetNext())
{
string searchStr = dtfi.AMDesignator;
if (searchStr.Length > 0)
{
if (str.MatchSpecifiedWord(searchStr))
{
// Found an AM timemark with length > 0.
str.Index += (searchStr.Length - 1);
result = TM.AM;
return true;
}
}
searchStr = dtfi.PMDesignator;
if (searchStr.Length > 0)
{
if (str.MatchSpecifiedWord(searchStr))
{
// Found a PM timemark with length > 0.
str.Index += (searchStr.Length - 1);
result = TM.PM;
return true;
}
}
str.Index--; // Undo the GetNext call.
}
if (result != TM.NotSet)
{
// If one of the AM/PM marks is empty string, return the result.
return true;
}
return false;
}
/*=================================MatchAbbreviatedTimeMark==================================
**Action: Parse the abbreviated time mark (AM/PM) from string starting at str.Index.
**Returns: TM_AM or TM_PM.
**Arguments: str: a __DTString. The parsing will start from the
** next character after str.Index.
**Exceptions: FormatException if a abbreviated time mark can not be found.
==============================================================================*/
private static bool MatchAbbreviatedTimeMark(ref __DTString str, DateTimeFormatInfo dtfi, scoped ref TM result)
{
// NOTENOTE : the assumption here is that abbreviated time mark is the first
// character of the AM/PM designator. If this invariant changes, we have to
// change the code below.
if (str.GetNext())
{
string amDesignator = dtfi.AMDesignator;
if (amDesignator.Length > 0 && str.GetChar() == amDesignator[0])
{
result = TM.AM;
return true;
}
string pmDesignator = dtfi.PMDesignator;
if (pmDesignator.Length > 0 && str.GetChar() == pmDesignator[0])
{
result = TM.PM;
return true;
}
}
return false;
}
/*=================================CheckNewValue==================================
**Action: Check if currentValue is initialized. If not, return the newValue.
** If yes, check if the current value is equal to newValue. Return false
** if they are not equal. This is used to check the case like "d" and "dd" are both
** used to format a string.
**Returns: the correct value for currentValue.
**Arguments:
**Exceptions:
==============================================================================*/
private static bool CheckNewValue(scoped ref int currentValue, int newValue, char patternChar, scoped ref DateTimeResult result)
{
if (currentValue == -1)
{
currentValue = newValue;
return true;
}
else
{
if (newValue != currentValue)
{
result.SetFailure(ParseFailureKind.Format_RepeatDateTimePattern, patternChar);
return false;
}
}
return true;
}
private static DateTime GetDateTimeNow(scoped ref DateTimeResult result, scoped ref DateTimeStyles styles)
{
if ((result.flags & (ParseFlags.CaptureOffset | ParseFlags.TimeZoneUsed)) == (ParseFlags.CaptureOffset | ParseFlags.TimeZoneUsed))
{
// use the supplied offset to calculate 'Now'
return new DateTime(DateTime.UtcNow.Ticks + result.timeZoneOffset.Ticks, DateTimeKind.Unspecified);
}
return (styles & DateTimeStyles.AssumeUniversal) != 0 ? DateTime.UtcNow : DateTime.Now;
}
private static bool CheckDefaultDateTime(scoped ref DateTimeResult result, scoped ref Calendar cal, DateTimeStyles styles)
{
if ((result.flags & ParseFlags.CaptureOffset) != 0)
{
// DateTimeOffset.Parse should allow dates without a year, but only if there is also no time zone marker;
// e.g. "May 1 5pm" is OK, but "May 1 5pm -08:30" is not. This is somewhat pragmatic, since we would
// have to rearchitect parsing completely to allow this one case to correctly handle things like leap
// years and leap months. Is an extremely corner case, and DateTime is basically incorrect in that
// case today.
//
// values like "11:00Z" or "11:00 -3:00" are also acceptable
//
// if ((month or day is set) and (year is not set and time zone is set))
//
if (((result.Month != -1) || (result.Day != -1))
&& ((result.Year == -1 || ((result.flags & ParseFlags.YearDefault) != 0)) && (result.flags & ParseFlags.TimeZoneUsed) != 0))
{
result.SetFailure(ParseFailureKind.Format_MissingIncompleteDate);
return false;
}
}
if ((result.Year == -1) || (result.Month == -1) || (result.Day == -1))
{
/*
The following table describes the behaviors of getting the default value
when a certain year/month/day values are missing.
An "X" means that the value exists. And "--" means that value is missing.
Year Month Day => ResultYear ResultMonth ResultDay Note
X X X Parsed year Parsed month Parsed day
X X -- Parsed Year Parsed month First day If we have year and month, assume the first day of that month.
X -- X Parsed year First month Parsed day If the month is missing, assume first month of that year.
X -- -- Parsed year First month First day If we have only the year, assume the first day of that year.
-- X X CurrentYear Parsed month Parsed day If the year is missing, assume the current year.
-- X -- CurrentYear Parsed month First day If we have only a month value, assume the current year and current day.
-- -- X CurrentYear First month Parsed day If we have only a day value, assume current year and first month.
-- -- -- CurrentYear Current month Current day So this means that if the date string only contains time, you will get current date.
*/
DateTime now = GetDateTimeNow(ref result, ref styles);
if (result.Month == -1 && result.Day == -1)
{
if (result.Year == -1)
{
if ((styles & DateTimeStyles.NoCurrentDateDefault) != 0)
{
// If there is no year/month/day values, and NoCurrentDateDefault flag is used,
// set the year/month/day value to the beginning year/month/day of DateTime().
// Note we should be using Gregorian for the year/month/day.
cal = GregorianCalendar.GetDefaultInstance();
result.Year = result.Month = result.Day = 1;
}
else
{
// Year/Month/Day are all missing.
result.Year = cal.GetYear(now);
result.Month = cal.GetMonth(now);
result.Day = cal.GetDayOfMonth(now);
}
}
else
{
// Month/Day are both missing.
result.Month = 1;
result.Day = 1;
}
}
else
{
if (result.Year == -1)
{
result.Year = cal.GetYear(now);
}
if (result.Month == -1)
{
result.Month = 1;
}
if (result.Day == -1)
{
result.Day = 1;
}
}
}
// Set Hour/Minute/Second to zero if these value are not in str.
if (result.Hour == -1) result.Hour = 0;
if (result.Minute == -1) result.Minute = 0;
if (result.Second == -1) result.Second = 0;
if (result.era == -1) result.era = Calendar.CurrentEra;
return true;
}
// Expand a pre-defined format string (like "D" for long date) to the real format that
// we are going to use in the date time parsing.
// This method also set the dtfi according/parseInfo to some special pre-defined
// formats.
//
private static string ExpandPredefinedFormat(char format, scoped ref DateTimeFormatInfo dtfi, scoped ref ParsingInfo parseInfo, scoped ref DateTimeResult result)
{
//
// Check the format to see if we need to override the dtfi to be InvariantInfo,
// and see if we need to set up the userUniversalTime flag.
//
switch (format)
{
case 's': // Sortable format (in local time)
case 'o':
case 'O': // Round Trip Format
parseInfo.calendar = GregorianCalendar.GetDefaultInstance();
dtfi = DateTimeFormatInfo.InvariantInfo;
break;
case 'r':
case 'R': // RFC 1123 Standard. (in Universal time)
parseInfo.calendar = GregorianCalendar.GetDefaultInstance();
dtfi = DateTimeFormatInfo.InvariantInfo;
if ((result.flags & ParseFlags.CaptureOffset) != 0)
{
result.flags |= ParseFlags.Rfc1123Pattern;
}
break;
case 'u': // Universal time format in sortable format.
parseInfo.calendar = GregorianCalendar.GetDefaultInstance();
dtfi = DateTimeFormatInfo.InvariantInfo;
if ((result.flags & ParseFlags.CaptureOffset) != 0)
{
result.flags |= ParseFlags.UtcSortPattern;
}
break;
case 'U': // Universal time format with culture-dependent format.
parseInfo.calendar = GregorianCalendar.GetDefaultInstance();
result.flags |= ParseFlags.TimeZoneUsed;
result.timeZoneOffset = new TimeSpan(0);
result.flags |= ParseFlags.TimeZoneUtc;
if (dtfi.Calendar.GetType() != typeof(GregorianCalendar))
{
dtfi = (DateTimeFormatInfo)dtfi.Clone();
dtfi.Calendar = GregorianCalendar.GetDefaultInstance();
}
break;
}
//
// Expand the pre-defined format character to the real format from DateTimeFormatInfo.
//
return DateTimeFormat.ExpandStandardFormatToCustomPattern(format, dtfi);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool ParseJapaneseEraStart(ref __DTString str, DateTimeFormatInfo dtfi)
{
// ParseJapaneseEraStart will be called when parsing the year number. We can have dates which not listing
// the year as a number and listing it as JapaneseEraStart symbol (which means year 1).
// This will be legitimate date to recognize.
if (LocalAppContextSwitches.EnforceLegacyJapaneseDateParsing || dtfi.Calendar.ID != CalendarId.JAPAN || !str.GetNext())
return false;
if (str.m_current != DateTimeFormatInfo.JapaneseEraStart[0])
{
str.Index--;
return false;
}
return true;
}
// Given a specified format character, parse and update the parsing result.
//
private static bool ParseByFormat(
ref __DTString str,
ref __DTString format,
scoped ref ParsingInfo parseInfo,
DateTimeFormatInfo dtfi,
scoped ref DateTimeResult result)
{
int tokenLen;
int tempYear = 0, tempMonth = 0, tempDay = 0, tempDayOfWeek = 0, tempHour = 0, tempMinute = 0, tempSecond = 0;
double tempFraction = 0;
TM tempTimeMark = 0;
char ch = format.GetChar();
switch (ch)
{
case 'y':
tokenLen = format.GetRepeatCount();
bool parseResult;
if (ParseJapaneseEraStart(ref str, dtfi))
{
tempYear = 1;
parseResult = true;
}
else if (dtfi.HasForceTwoDigitYears)
{
parseResult = ParseDigits(ref str, 1, 4, out tempYear);
}
else
{
if (tokenLen <= 2)
{
parseInfo.fUseTwoDigitYear = true;
}
parseResult = ParseDigits(ref str, tokenLen, out tempYear);
}
if (!parseResult && parseInfo.fUseHebrewNumberParser)
{
parseResult = MatchHebrewDigits(ref str, out tempYear);
}
if (!parseResult)
{
result.SetBadDateTimeFailure();
return false;
}
if (!CheckNewValue(ref result.Year, tempYear, ch, ref result))
{
return false;
}
break;
case 'M':
tokenLen = format.GetRepeatCount();
if (tokenLen <= 2)
{
if (!ParseDigits(ref str, tokenLen, out tempMonth))
{
if (!parseInfo.fUseHebrewNumberParser ||
!MatchHebrewDigits(ref str, out tempMonth))
{
result.SetBadDateTimeFailure();
return false;
}
}
}
else
{
if (tokenLen == 3)
{
if (!MatchAbbreviatedMonthName(ref str, dtfi, ref tempMonth, format.Value))
{
result.SetBadDateTimeFailure();
return false;
}
}
else
{
if (!MatchMonthName(ref str, dtfi, ref tempMonth, format.Value))
{
result.SetBadDateTimeFailure();
return false;
}
}
result.flags |= ParseFlags.ParsedMonthName;
}
if (!CheckNewValue(ref result.Month, tempMonth, ch, ref result))
{
return false;
}
break;
case 'd':
// Day & Day of week
tokenLen = format.GetRepeatCount();
if (tokenLen <= 2)
{
// "d" & "dd"
if (!ParseDigits(ref str, tokenLen, out tempDay))
{
if (!parseInfo.fUseHebrewNumberParser ||
!MatchHebrewDigits(ref str, out tempDay))
{
result.SetBadDateTimeFailure();
return false;
}
}
if (!CheckNewValue(ref result.Day, tempDay, ch, ref result))
{
return false;
}
}
else
{
if (tokenLen == 3)
{
// "ddd"
if (!MatchAbbreviatedDayName(ref str, dtfi, ref tempDayOfWeek))
{
result.SetBadDateTimeFailure();
return false;
}
}
else
{
// "dddd*"
if (!MatchDayName(ref str, dtfi, ref tempDayOfWeek))
{
result.SetBadDateTimeFailure();
return false;
}
}
if (!CheckNewValue(ref parseInfo.dayOfWeek, tempDayOfWeek, ch, ref result))
{
return false;
}
}
break;
case 'g':
_ = format.GetRepeatCount();
// Put the era value in result.era.
if (!MatchEraName(ref str, dtfi, ref result.era))
{
result.SetBadDateTimeFailure();
return false;
}
break;
case 'h':
parseInfo.fUseHour12 = true;
tokenLen = format.GetRepeatCount();
if (!ParseDigits(ref str, tokenLen < 2 ? 1 : 2, out tempHour))
{
result.SetBadDateTimeFailure();
return false;
}
if (!CheckNewValue(ref result.Hour, tempHour, ch, ref result))
{
return false;
}
break;
case 'H':
tokenLen = format.GetRepeatCount();
if (!ParseDigits(ref str, tokenLen < 2 ? 1 : 2, out tempHour))
{
result.SetBadDateTimeFailure();
return false;
}
if (!CheckNewValue(ref result.Hour, tempHour, ch, ref result))
{
return false;
}
break;
case 'm':
tokenLen = format.GetRepeatCount();
if (!ParseDigits(ref str, tokenLen < 2 ? 1 : 2, out tempMinute))
{
result.SetBadDateTimeFailure();
return false;
}
if (!CheckNewValue(ref result.Minute, tempMinute, ch, ref result))
{
return false;
}
break;
case 's':
tokenLen = format.GetRepeatCount();
if (!ParseDigits(ref str, tokenLen < 2 ? 1 : 2, out tempSecond))
{
result.SetBadDateTimeFailure();
return false;
}
if (!CheckNewValue(ref result.Second, tempSecond, ch, ref result))
{
return false;
}
break;
case 'f':
case 'F':
tokenLen = format.GetRepeatCount();
if (tokenLen <= DateTimeFormat.MaxSecondsFractionDigits)
{
if (!ParseFractionExact(ref str, tokenLen, ref tempFraction))
{
if (ch == 'f')
{
result.SetBadDateTimeFailure();
return false;
}
}
if (result.fraction < 0)
{
result.fraction = tempFraction;
}
else
{
if (tempFraction != result.fraction)
{
result.SetFailure(ParseFailureKind.Format_RepeatDateTimePattern, ch);
return false;
}
}
}
else
{
result.SetBadDateTimeFailure();
return false;
}
break;
case 't':
// AM/PM designator
tokenLen = format.GetRepeatCount();
if (tokenLen == 1)
{
if (!MatchAbbreviatedTimeMark(ref str, dtfi, ref tempTimeMark))
{
result.SetBadDateTimeFailure();
return false;
}
}
else
{
if (!MatchTimeMark(ref str, dtfi, ref tempTimeMark))
{
result.SetBadDateTimeFailure();
return false;
}
}
if (parseInfo.timeMark == TM.NotSet)
{
parseInfo.timeMark = tempTimeMark;
}
else
{
if (parseInfo.timeMark != tempTimeMark)
{
result.SetFailure(ParseFailureKind.Format_RepeatDateTimePattern, ch);
return false;
}
}
break;
case 'z':
// timezone offset
tokenLen = format.GetRepeatCount();
{
TimeSpan tempTimeZoneOffset = new TimeSpan(0);
if (!ParseTimeZoneOffset(ref str, tokenLen, ref tempTimeZoneOffset))
{
result.SetBadDateTimeFailure();
return false;
}
if ((result.flags & ParseFlags.TimeZoneUsed) != 0 && tempTimeZoneOffset != result.timeZoneOffset)
{
result.SetFailure(ParseFailureKind.Format_RepeatDateTimePattern, 'z');
return false;
}
result.timeZoneOffset = tempTimeZoneOffset;
result.flags |= ParseFlags.TimeZoneUsed;
}
break;
case 'Z':
if ((result.flags & ParseFlags.TimeZoneUsed) != 0 && result.timeZoneOffset != TimeSpan.Zero)
{
result.SetFailure(ParseFailureKind.Format_RepeatDateTimePattern, 'Z');
return false;
}
result.flags |= ParseFlags.TimeZoneUsed;
result.timeZoneOffset = new TimeSpan(0);
result.flags |= ParseFlags.TimeZoneUtc;
// The updating of the indexes is to reflect that ParseExact MatchXXX methods assume that
// they need to increment the index and Parse GetXXX do not. Since we are calling a Parse
// method from inside ParseExact we need to adjust this. Long term, we should try to
// eliminate this discrepancy.
str.Index++;
if (!GetTimeZoneName(ref str))
{
result.SetBadDateTimeFailure();
return false;
}
str.Index--;
break;
case 'K':
// This should parse either as a blank, the 'Z' character or a local offset like "-07:00"
if (str.Match('Z'))
{
if ((result.flags & ParseFlags.TimeZoneUsed) != 0 && result.timeZoneOffset != TimeSpan.Zero)
{
result.SetFailure(ParseFailureKind.Format_RepeatDateTimePattern, 'K');
return false;
}
result.flags |= ParseFlags.TimeZoneUsed;
result.timeZoneOffset = new TimeSpan(0);
result.flags |= ParseFlags.TimeZoneUtc;
}
else if (str.Match('+') || str.Match('-'))
{
str.Index--; // Put the character back for the parser
TimeSpan tempTimeZoneOffset = new TimeSpan(0);
if (!ParseTimeZoneOffset(ref str, 3, ref tempTimeZoneOffset))
{
result.SetBadDateTimeFailure();
return false;
}
if ((result.flags & ParseFlags.TimeZoneUsed) != 0 && tempTimeZoneOffset != result.timeZoneOffset)
{
result.SetFailure(ParseFailureKind.Format_RepeatDateTimePattern, 'K');
return false;
}
result.timeZoneOffset = tempTimeZoneOffset;
result.flags |= ParseFlags.TimeZoneUsed;
}
// Otherwise it is unspecified and we consume no characters
break;
case ':':
// We match the separator in time pattern with the character in the time string if both equal to ':' or the date separator is matching the characters in the date string
// We have to exclude the case when the time separator is more than one character and starts with ':' something like "::" for instance.
if (((dtfi.TimeSeparator.Length > 1 && dtfi.TimeSeparator[0] == ':') || !str.Match(':')) &&
!str.Match(dtfi.TimeSeparator))
{
// A time separator is expected.
result.SetBadDateTimeFailure();
return false;
}
break;
case '/':
// We match the separator in date pattern with the character in the date string if both equal to '/' or the date separator is matching the characters in the date string
// We have to exclude the case when the date separator is more than one character and starts with '/' something like "//" for instance.
if (((dtfi.DateSeparator.Length > 1 && dtfi.DateSeparator[0] == '/') || !str.Match('/')) &&
!str.Match(dtfi.DateSeparator))
{
// A date separator is expected.
result.SetBadDateTimeFailure();
return false;
}
break;
case '\"':
case '\'':
var enquotedString = new ValueStringBuilder(stackalloc char[128]);
// Use ParseQuoteString so that we can handle escape characters within the quoted string.
if (!TryParseQuoteString(format.Value, format.Index, ref enquotedString, out tokenLen))
{
result.SetFailure(ParseFailureKind.Format_BadQuote, ch);
enquotedString.Dispose();
return false;
}
format.Index += tokenLen - 1;
// Some cultures uses space in the quoted string. E.g. Spanish has long date format as:
// "dddd, dd' de 'MMMM' de 'yyyy". When inner spaces flag is set, we should skip whitespaces if there is space
// in the quoted string.
ReadOnlySpan<char> quotedSpan = enquotedString.AsSpan();
for (int i = 0; i < quotedSpan.Length; i++)
{
if (parseInfo.fAllowInnerWhite && char.IsWhiteSpace(quotedSpan[i]))
{
str.SkipWhiteSpaces();
}
else if (!str.Match(quotedSpan[i]))
{
// Can not find the matching quoted string.
result.SetBadDateTimeFailure();
enquotedString.Dispose();
return false;
}
}
// The "r" and "u" formats incorrectly quoted 'GMT' and 'Z', respectively. We cannot
// correct this mistake for DateTime.ParseExact for compatibility reasons, but we can
// fix it for DateTimeOffset.ParseExact as DateTimeOffset has not been publicly released
// with this issue.
if ((result.flags & ParseFlags.CaptureOffset) != 0)
{
if (((result.flags & ParseFlags.Rfc1123Pattern) != 0 && quotedSpan.SequenceEqual(GMTName)) ||
((result.flags & ParseFlags.UtcSortPattern) != 0 && quotedSpan.SequenceEqual(ZuluName)))
{
result.flags |= ParseFlags.TimeZoneUsed;
result.timeZoneOffset = TimeSpan.Zero;
}
}
enquotedString.Dispose();
break;
case '%':
// Skip this so we can get to the next pattern character.
// Used in case like "%d", "%y"
// Make sure the next character is not a '%' again.
if (format.Index >= format.Value.Length - 1 || format.Value[format.Index + 1] == '%')
{
result.SetBadFormatSpecifierFailure(format.Value);
return false;
}
break;
case '\\':
// Escape character. For example, "\d".
// Get the next character in format, and see if we can
// find a match in str.
if (format.GetNext())
{
if (!str.Match(format.GetChar()))
{
// Can not find a match for the escaped character.
result.SetBadDateTimeFailure();
return false;
}
}
else
{
result.SetBadFormatSpecifierFailure(format.Value);
return false;
}
break;
case '.':
if (!str.Match(ch))
{
if (format.GetNext())
{
// If we encounter the pattern ".F", and the dot is not present, it is an optional
// second fraction and we can skip this format.
if (format.Match('F'))
{
format.GetRepeatCount();
break;
}
}
result.SetBadDateTimeFailure();
return false;
}
break;
default:
if (parseInfo.fAllowInnerWhite && char.IsWhiteSpace(ch))
{
// Skip whitespaces if AllowInnerWhite.
// Do nothing here.
}
else if (format.MatchSpecifiedWord(GMTName))
{
format.Index += (GMTName.Length - 1);
// Found GMT string in format. This means the DateTime string
// is in GMT timezone.
result.flags |= ParseFlags.TimeZoneUsed;
result.timeZoneOffset = TimeSpan.Zero;
if (!str.Match(GMTName))
{
result.SetBadDateTimeFailure();
return false;
}
}
else if (!str.Match(ch))
{
if (parseInfo.fAllowTrailingWhite && char.IsWhiteSpace(ch))
{
if (format.GetNext())
{
if (ParseByFormat(ref str, ref format, ref parseInfo, dtfi, ref result))
{
return true;
}
}
}
// ch is expected.
result.SetBadDateTimeFailure();
return false;
}
// Found a match.
break;
} // switch
return true;
}
//
// The pos should point to a quote character. This method will
// get the string enclosed by the quote character.
//
internal static bool TryParseQuoteString(ReadOnlySpan<char> format, int pos, ref ValueStringBuilder result, out int returnValue)
{
// NOTE: pos will be the index of the quote character in the 'format' string.
int beginPos = pos;
char quoteChar = format[pos++]; // Get the character used to quote the following string.
bool foundQuote = false;
while ((uint)pos < (uint)format.Length)
{
char ch = format[pos++];
if (ch == quoteChar)
{
foundQuote = true;
break;
}
else if (ch == '\\')
{
// The following are used to support escaped character.
// Escaped character is also supported in the quoted string.
// Therefore, someone can use a format like "'minute:' mm\"" to display:
// minute: 45"
// because the second double quote is escaped.
if ((uint)pos < (uint)format.Length)
{
result.Append(format[pos++]);
}
else
{
// This means that '\' is at the end of the formatting string.
returnValue = 0;
return false;
}
}
else
{
result.Append(ch);
}
}
if (!foundQuote)
{
// Here we can't find the matching quote.
returnValue = 0;
return false;
}
//
// Return the character count including the begin/end quote characters and enclosed string.
//
returnValue = (pos - beginPos);
return true;
}
/*=================================DoStrictParse==================================
**Action: Do DateTime parsing using the format in formatParam.
**Returns: The parsed DateTime.
**Arguments:
**Exceptions:
**
**Notes:
** When the following general formats are used, InvariantInfo is used in dtfi:
** 'r', 'R', 's'.
** When the following general formats are used, the time is assumed to be in Universal time.
**
**Limitations:
** Only GregorianCalendar is supported for now.
** Only support GMT timezone.
==============================================================================*/
private static bool DoStrictParse(
ReadOnlySpan<char> s,
ReadOnlySpan<char> formatParam,
DateTimeStyles styles,
DateTimeFormatInfo dtfi,
scoped ref DateTimeResult result)
{
var parseInfo = new ParsingInfo(dtfi.Calendar);
parseInfo.fAllowInnerWhite = ((styles & DateTimeStyles.AllowInnerWhite) != 0);
parseInfo.fAllowTrailingWhite = ((styles & DateTimeStyles.AllowTrailingWhite) != 0);
if (formatParam.Length == 1)
{
char formatParamChar = formatParam[0];
// Fast-paths for common and important formats/configurations.
if (styles == DateTimeStyles.None)
{
switch (formatParamChar | 0x20)
{
case 'r':
return TryParseFormatR(s, ref result);
case 'o':
return TryParseFormatO(s, ref result);
}
}
if (((result.flags & ParseFlags.CaptureOffset) != 0) && formatParamChar == 'U')
{
// The 'U' format is not allowed for DateTimeOffset
result.SetBadFormatSpecifierFailure(formatParam);
return false;
}
formatParam = ExpandPredefinedFormat(formatParamChar, ref dtfi, ref parseInfo, ref result);
}
result.calendar = parseInfo.calendar;
parseInfo.fUseHebrewNumberParser = parseInfo.calendar.ID == CalendarId.HEBREW;
// Reset these values to negative one so that we could throw exception
// if we have parsed every item twice.
result.Hour = result.Minute = result.Second = -1;
__DTString format = new __DTString(formatParam, dtfi, false);
__DTString str = new __DTString(s, dtfi, false);
if (parseInfo.fAllowTrailingWhite)
{
// Trim trailing spaces if AllowTrailingWhite.
format.TrimTail();
format.RemoveTrailingInQuoteSpaces();
str.TrimTail();
}
if ((styles & DateTimeStyles.AllowLeadingWhite) != 0)
{
format.SkipWhiteSpaces();
format.RemoveLeadingInQuoteSpaces();
str.SkipWhiteSpaces();
}
//
// Scan every character in format and match the pattern in str.
//
while (format.GetNext())
{
// We trim inner spaces here, so that we will not eat trailing spaces when
// AllowTrailingWhite is not used.
if (parseInfo.fAllowInnerWhite)
{
str.SkipWhiteSpaces();
}
if (!ParseByFormat(ref str, ref format, ref parseInfo, dtfi, ref result))
{
return false;
}
}
if (str.Index < str.Value.Length - 1)
{
// There are still remaining character in str.
result.SetBadDateTimeFailure();
return false;
}
if (parseInfo.fUseTwoDigitYear && ((dtfi.FormatFlags & DateTimeFormatFlags.UseHebrewRule) == 0))
{
// A two digit year value is expected. Check if the parsed year value is valid.
if (result.Year >= 100)
{
result.SetBadDateTimeFailure();
return false;
}
try
{
result.Year = parseInfo.calendar.ToFourDigitYear(result.Year);
}
catch (ArgumentOutOfRangeException)
{
result.SetBadDateTimeFailure();
return false;
}
}
if (parseInfo.fUseHour12)
{
if (parseInfo.timeMark == TM.NotSet)
{
// hh is used, but no AM/PM designator is specified.
// Assume the time is AM.
// Don't throw exceptions in here because it is very confusing for the caller.
// I always got confused myself when I use "hh:mm:ss" to parse a time string,
// and ParseExact() throws on me (because I didn't use the 24-hour clock 'HH').
parseInfo.timeMark = TM.AM;
}
if (result.Hour > 12)
{
// AM/PM is used, but the value for HH is too big.
result.SetBadDateTimeFailure();
return false;
}
if (parseInfo.timeMark == TM.AM)
{
if (result.Hour == 12)
{
result.Hour = 0;
}
}
else
{
result.Hour = (result.Hour == 12) ? 12 : result.Hour + 12;
}
}
else
{
// Military (24-hour time) mode
//
// AM cannot be set with a 24-hour time like 17:15.
// PM cannot be set with a 24-hour time like 03:15.
if ((parseInfo.timeMark == TM.AM && result.Hour >= 12)
|| (parseInfo.timeMark == TM.PM && result.Hour < 12))
{
result.SetBadDateTimeFailure();
return false;
}
}
// Check if the parsed string only contains hour/minute/second values.
bool bTimeOnly = (result.Year == -1 && result.Month == -1 && result.Day == -1);
if (!CheckDefaultDateTime(ref result, ref parseInfo.calendar, styles))
{
return false;
}
if (!bTimeOnly && dtfi.HasYearMonthAdjustment)
{
if (!dtfi.YearMonthAdjustment(ref result.Year, ref result.Month, (result.flags & ParseFlags.ParsedMonthName) != 0))
{
result.SetFailure(ParseFailureKind.Format_BadDateTimeCalendar);
return false;
}
}
if (!parseInfo.calendar.TryToDateTime(result.Year, result.Month, result.Day,
result.Hour, result.Minute, result.Second, 0, result.era, out result.parsedDate))
{
result.SetFailure(ParseFailureKind.Format_BadDateTimeCalendar);
return false;
}
if (result.fraction > 0)
{
if (!result.parsedDate.TryAddTicks((long)Math.Round(result.fraction * TimeSpan.TicksPerSecond), out result.parsedDate))
{
result.SetBadDateTimeFailure();
return false;
}
}
//
// We have to check day of week before we adjust to the time zone.
// It is because the value of day of week may change after adjusting
// to the time zone.
//
if (parseInfo.dayOfWeek != -1)
{
//
// Check if day of week is correct.
//
if (parseInfo.dayOfWeek != (int)parseInfo.calendar.GetDayOfWeek(result.parsedDate))
{
result.SetFailure(ParseFailureKind.Format_BadDayOfWeek);
return false;
}
}
return DetermineTimeZoneAdjustments(ref result, styles, bTimeOnly);
}
private static bool TryParseFormatR(ReadOnlySpan<char> source, scoped ref DateTimeResult result)
{
// Example:
// Tue, 03 Jan 2017 08:08:05 GMT
// The format is exactly 29 characters.
if (source.Length != 29)
{
result.SetBadDateTimeFailure();
return false;
}
// Parse the three-letter day of week. Any casing is valid.
DayOfWeek dayOfWeek;
{
uint dow0 = source[0], dow1 = source[1], dow2 = source[2], comma = source[3];
if ((dow0 | dow1 | dow2 | comma) > 0x7F)
{
result.SetBadDateTimeFailure();
return false;
}
uint dowString = (dow0 << 24) | (dow1 << 16) | (dow2 << 8) | comma | 0x20202000;
switch (dowString)
{
case 0x73756E2c /* 'sun,' */: dayOfWeek = DayOfWeek.Sunday; break;
case 0x6d6f6e2c /* 'mon,' */: dayOfWeek = DayOfWeek.Monday; break;
case 0x7475652c /* 'tue,' */: dayOfWeek = DayOfWeek.Tuesday; break;
case 0x7765642c /* 'wed,' */: dayOfWeek = DayOfWeek.Wednesday; break;
case 0x7468752c /* 'thu,' */: dayOfWeek = DayOfWeek.Thursday; break;
case 0x6672692c /* 'fri,' */: dayOfWeek = DayOfWeek.Friday; break;
case 0x7361742c /* 'sat,' */: dayOfWeek = DayOfWeek.Saturday; break;
default:
result.SetBadDateTimeFailure();
return false;
}
}
if (source[4] != ' ')
{
result.SetBadDateTimeFailure();
return false;
}
// Parse the two digit day.
int day;
{
uint digit1 = (uint)(source[5] - '0'), digit2 = (uint)(source[6] - '0');
if (digit1 > 9 || digit2 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
day = (int)(digit1 * 10 + digit2);
}
if (source[7] != ' ')
{
result.SetBadDateTimeFailure();
return false;
}
// Parse the three letter month (followed by a space). Any casing is valid.
int month;
{
uint m0 = source[8], m1 = source[9], m2 = source[10], space = source[11];
if ((m0 | m1 | m2 | space) > 0x7F)
{
result.SetBadDateTimeFailure();
return false;
}
switch ((m0 << 24) | (m1 << 16) | (m2 << 8) | space | 0x20202000)
{
case 0x6a616e20: /* 'jan ' */ month = 1; break;
case 0x66656220: /* 'feb ' */ month = 2; break;
case 0x6d617220: /* 'mar ' */ month = 3; break;
case 0x61707220: /* 'apr ' */ month = 4; break;
case 0x6d617920: /* 'may ' */ month = 5; break;
case 0x6a756e20: /* 'jun ' */ month = 6; break;
case 0x6a756c20: /* 'jul ' */ month = 7; break;
case 0x61756720: /* 'aug ' */ month = 8; break;
case 0x73657020: /* 'sep ' */ month = 9; break;
case 0x6f637420: /* 'oct ' */ month = 10; break;
case 0x6e6f7620: /* 'nov ' */ month = 11; break;
case 0x64656320: /* 'dec ' */ month = 12; break;
default:
result.SetBadDateTimeFailure();
return false;
}
}
// Parse the four-digit year.
int year;
{
uint y1 = (uint)(source[12] - '0'), y2 = (uint)(source[13] - '0'), y3 = (uint)(source[14] - '0'), y4 = (uint)(source[15] - '0');
if (y1 > 9 || y2 > 9 || y3 > 9 || y4 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
year = (int)(y1 * 1000 + y2 * 100 + y3 * 10 + y4);
}
if (source[16] != ' ')
{
result.SetBadDateTimeFailure();
return false;
}
// Parse the two digit hour.
int hour;
{
uint h1 = (uint)(source[17] - '0'), h2 = (uint)(source[18] - '0');
if (h1 > 9 || h2 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
hour = (int)(h1 * 10 + h2);
}
if (source[19] != ':')
{
result.SetBadDateTimeFailure();
return false;
}
// Parse the two-digit minute.
int minute;
{
uint m1 = (uint)(source[20] - '0');
uint m2 = (uint)(source[21] - '0');
if (m1 > 9 || m2 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
minute = (int)(m1 * 10 + m2);
}
if (source[22] != ':')
{
result.SetBadDateTimeFailure();
return false;
}
// Parse the two-digit second.
int second;
{
uint s1 = (uint)(source[23] - '0'), s2 = (uint)(source[24] - '0');
if (s1 > 9 || s2 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
second = (int)(s1 * 10 + s2);
}
// Parse " GMT". It must be upper case.
if (source[25] != ' ' || source[26] != 'G' || source[27] != 'M' || source[28] != 'T')
{
result.SetBadDateTimeFailure();
return false;
}
// Validate that the parsed date is valid.
if (!DateTime.TryCreate(year, month, day, hour, minute, second, 0, out result.parsedDate))
{
result.SetFailure(ParseFailureKind.Format_BadDateTimeCalendar);
return false;
}
// And validate that the parsed day of week matches what the calendar said it should be.
if (dayOfWeek != result.parsedDate.DayOfWeek)
{
result.SetFailure(ParseFailureKind.Format_BadDayOfWeek);
return false;
}
return true;
}
private static bool TryParseFormatO(ReadOnlySpan<char> source, scoped ref DateTimeResult result)
{
// Examples:
// 2017-06-12T05:30:45.7680000 (interpreted as local time wrt to current time zone)
// 2017-06-12T05:30:45.7680000Z (Z is short for "+00:00" but also distinguishes DateTimeKind.Utc from DateTimeKind.Local)
// 2017-06-12T05:30:45.7680000-7:00 (special-case of one-digit offset hour)
// 2017-06-12T05:30:45.7680000-07:00
if (source.Length < 27 ||
source[4] != '-' ||
source[7] != '-' ||
source[10] != 'T' ||
source[13] != ':' ||
source[16] != ':' ||
source[19] != '.')
{
result.SetBadDateTimeFailure();
return false;
}
int year;
{
uint y1 = (uint)(source[0] - '0'), y2 = (uint)(source[1] - '0'), y3 = (uint)(source[2] - '0'), y4 = (uint)(source[3] - '0');
if (y1 > 9 || y2 > 9 || y3 > 9 || y4 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
year = (int)(y1 * 1000 + y2 * 100 + y3 * 10 + y4);
}
int month;
{
uint m1 = (uint)(source[5] - '0'), m2 = (uint)(source[6] - '0');
if (m1 > 9 || m2 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
month = (int)(m1 * 10 + m2);
}
int day;
{
uint d1 = (uint)(source[8] - '0'), d2 = (uint)(source[9] - '0');
if (d1 > 9 || d2 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
day = (int)(d1 * 10 + d2);
}
int hour;
{
uint h1 = (uint)(source[11] - '0'), h2 = (uint)(source[12] - '0');
if (h1 > 9 || h2 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
hour = (int)(h1 * 10 + h2);
}
int minute;
{
uint m1 = (uint)(source[14] - '0'), m2 = (uint)(source[15] - '0');
if (m1 > 9 || m2 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
minute = (int)(m1 * 10 + m2);
}
int second;
{
uint s1 = (uint)(source[17] - '0'), s2 = (uint)(source[18] - '0');
if (s1 > 9 || s2 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
second = (int)(s1 * 10 + s2);
}
double fraction;
{
uint f1 = (uint)(source[20] - '0');
uint f2 = (uint)(source[21] - '0');
uint f3 = (uint)(source[22] - '0');
uint f4 = (uint)(source[23] - '0');
uint f5 = (uint)(source[24] - '0');
uint f6 = (uint)(source[25] - '0');
uint f7 = (uint)(source[26] - '0');
if (f1 > 9 || f2 > 9 || f3 > 9 || f4 > 9 || f5 > 9 || f6 > 9 || f7 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
fraction = (f1 * 1000000 + f2 * 100000 + f3 * 10000 + f4 * 1000 + f5 * 100 + f6 * 10 + f7) / 10000000.0;
}
if (!DateTime.TryCreate(year, month, day, hour, minute, second, 0, out DateTime dateTime))
{
result.SetBadDateTimeFailure();
return false;
}
if (!dateTime.TryAddTicks((long)Math.Round(fraction * TimeSpan.TicksPerSecond), out result.parsedDate))
{
result.SetBadDateTimeFailure();
return false;
}
if (source.Length > 27)
{
char offsetChar = source[27];
switch (offsetChar)
{
case 'Z':
if (source.Length != 28)
{
result.SetBadDateTimeFailure();
return false;
}
result.flags |= ParseFlags.TimeZoneUsed | ParseFlags.TimeZoneUtc;
break;
case '+':
case '-':
int offsetHours, colonIndex;
if (source.Length == 33)
{
uint oh1 = (uint)(source[28] - '0'), oh2 = (uint)(source[29] - '0');
if (oh1 > 9 || oh2 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
offsetHours = (int)(oh1 * 10 + oh2);
colonIndex = 30;
}
else if (source.Length == 32) // special-case allowed for compat: only one offset hour digit
{
offsetHours = source[28] - '0';
if ((uint)offsetHours > 9)
{
result.SetBadDateTimeFailure();
return false;
}
colonIndex = 29;
}
else
{
result.SetBadDateTimeFailure();
return false;
}
if (source[colonIndex] != ':')
{
result.SetBadDateTimeFailure();
return false;
}
int offsetMinutes;
{
uint om1 = (uint)(source[colonIndex + 1] - '0'), om2 = (uint)(source[colonIndex + 2] - '0');
if (om1 > 9 || om2 > 9)
{
result.SetBadDateTimeFailure();
return false;
}
offsetMinutes = (int)(om1 * 10 + om2);
}
result.flags |= ParseFlags.TimeZoneUsed;
result.timeZoneOffset = new TimeSpan(offsetHours, offsetMinutes, 0);
if (offsetChar == '-')
{
result.timeZoneOffset = result.timeZoneOffset.Negate();
}
break;
default:
result.SetBadDateTimeFailure();
return false;
}
}
return DetermineTimeZoneAdjustments(ref result, DateTimeStyles.None, bTimeOnly: false);
}
private static Exception GetDateTimeParseException(scoped ref DateTimeResult result)
{
switch (result.failure)
{
case ParseFailureKind.ArgumentNull_String:
return new ArgumentNullException("formats", SR.ArgumentNull_String);
case ParseFailureKind.Format_BadDatePattern:
return new FormatException(SR.Format(SR.Format_BadDatePattern, new string(result.failureSpanArgument)));
case ParseFailureKind.Format_BadDateTime:
return new FormatException(SR.Format(SR.Format_BadDateTime, new string(result.failureSpanArgument)));
case ParseFailureKind.Format_BadDateTimeCalendar:
return new FormatException(SR.Format(SR.Format_BadDateTimeCalendar, new string(result.failureSpanArgument), result.calendar));
case ParseFailureKind.Format_BadDayOfWeek:
return new FormatException(SR.Format(SR.Format_BadDayOfWeek, new string(result.failureSpanArgument)));
case ParseFailureKind.Format_BadFormatSpecifier:
return new FormatException(SR.Format(SR.Format_BadFormatSpecifier, new string(result.failureSpanArgument)));
case ParseFailureKind.Format_BadQuote:
return new FormatException(SR.Format(SR.Format_BadQuote, (char)result.failureIntArgument));
case ParseFailureKind.Format_DateOutOfRange:
return new FormatException(SR.Format(SR.Format_DateOutOfRange, new string(result.failureSpanArgument)));
case ParseFailureKind.Format_MissingIncompleteDate:
return new FormatException(SR.Format(SR.Format_MissingIncompleteDate, new string(result.failureSpanArgument)));
case ParseFailureKind.Format_NoFormatSpecifier:
return new FormatException(SR.Format_NoFormatSpecifier);
case ParseFailureKind.Format_OffsetOutOfRange:
return new FormatException(SR.Format(SR.Format_OffsetOutOfRange, new string(result.failureSpanArgument)));
case ParseFailureKind.Format_RepeatDateTimePattern:
return new FormatException(SR.Format(SR.Format_RepeatDateTimePattern, (char)result.failureIntArgument));
case ParseFailureKind.Format_UnknownDateTimeWord:
return new FormatException(SR.Format(SR.Format_UnknownDateTimeWord, new string(result.failureSpanArgument), result.failureIntArgument));
case ParseFailureKind.Format_UTCOutOfRange:
return new FormatException(SR.Format(SR.Format_UTCOutOfRange, new string(result.failureSpanArgument)));
default:
Debug.Fail("Unknown DateTimeParseFailure: " + result.failure.ToString());
return null!;
}
}
[Conditional("_LOGGING")]
private static void LexTraceExit(string message, DS dps)
{
#if _LOGGING
if (!s_tracingEnabled)
return;
Trace($"Lex return {message}, DS.{dps}");
#endif // _LOGGING
}
[Conditional("_LOGGING")]
private static void PTSTraceExit(DS dps, bool passed)
{
#if _LOGGING
if (!s_tracingEnabled)
return;
Trace($"ProcessTerminalState {(passed ? "passed" : "failed")} @ DS.{dps}");
#endif // _LOGGING
}
[Conditional("_LOGGING")]
private static void TPTraceExit(string message, DS dps)
{
#if _LOGGING
if (!s_tracingEnabled)
return;
Trace($"TryParse return {message}, DS.{dps}");
#endif // _LOGGING
}
[Conditional("_LOGGING")]
private static void DTFITrace(DateTimeFormatInfo dtfi)
{
#if _LOGGING
if (!s_tracingEnabled)
return;
Trace("DateTimeFormatInfo Properties");
Trace($" NativeCalendarName {Hex(dtfi.NativeCalendarName)}");
Trace($" AMDesignator {Hex(dtfi.AMDesignator)}");
Trace($" PMDesignator {Hex(dtfi.PMDesignator)}");
Trace($" TimeSeparator {Hex(dtfi.TimeSeparator)}");
Trace($" AbbrvDayNames {Hex(dtfi.AbbreviatedDayNames)}");
Trace($" ShortestDayNames {Hex(dtfi.ShortestDayNames)}");
Trace($" DayNames {Hex(dtfi.DayNames)}");
Trace($" AbbrvMonthNames {Hex(dtfi.AbbreviatedMonthNames)}");
Trace($" MonthNames {Hex(dtfi.MonthNames)}");
Trace($" AbbrvMonthGenNames {Hex(dtfi.AbbreviatedMonthGenitiveNames)}");
Trace($" MonthGenNames {Hex(dtfi.MonthGenitiveNames)}");
#endif // _LOGGING
}
#if _LOGGING
// return a string in the form: "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
private static string Hex(string[] strs)
{
if (strs == null || strs.Length == 0)
return string.Empty;
if (strs.Length == 1)
return Hex(strs[0]);
const int MaxLineLength = 55;
const int NewLinePadding = 20;
// invariant: strs.Length >= 2
StringBuilder buffer = new StringBuilder();
buffer.Append(Hex(strs[0]));
int curLineLength = buffer.Length;
string s;
for (int i = 1; i < strs.Length - 1; i++)
{
s = Hex(strs[i]);
if (s.Length > MaxLineLength || (curLineLength + s.Length + 2) > MaxLineLength)
{
buffer.Append(',');
buffer.AppendLine();
buffer.Append(' ', NewLinePadding);
curLineLength = 0;
}
else
{
buffer.Append(", ");
curLineLength += 2;
}
buffer.Append(s);
curLineLength += s.Length;
}
buffer.Append(',');
s = Hex(strs[^1]);
if (s.Length > MaxLineLength || (curLineLength + s.Length + 6) > MaxLineLength)
{
buffer.AppendLine();
buffer.Append(' ', NewLinePadding);
}
else
{
buffer.Append(' ');
}
buffer.Append(s);
return buffer.ToString();
}
// return a string in the form: "Sun"
private static string Hex(string str) => Hex((ReadOnlySpan<char>)str);
private static string Hex(ReadOnlySpan<char> str)
{
StringBuilder buffer = new StringBuilder();
buffer.Append('"');
for (int i = 0; i < str.Length; i++)
{
if (str[i] <= '\x007f')
buffer.Append(str[i]);
else
buffer.Append($"\\u{(int)str[i]:x4}");
}
buffer.Append('"');
return buffer.ToString();
}
// return an unicode escaped string form of char c
private static string Hex(char c)
{
if (c <= '\x007f')
return c.ToString(CultureInfo.InvariantCulture);
else
return "\\u" + ((int)c).ToString("x4", CultureInfo.InvariantCulture);
}
#pragma warning disable IDE0060
private static void Trace(string s)
{
//Internal.Console.WriteLine(s);
}
#pragma warning restore IDE0060
// for testing; do not make this readonly
private static bool s_tracingEnabled;
#endif // _LOGGING
}
//
// This is a string parsing helper which wraps a String object.
// It has a Index property which tracks
// the current parsing pointer of the string.
//
internal ref struct __DTString
{
internal const char RightToLeftMark = '\u200F';
//
// Value property: stores the real string to be parsed.
//
internal ReadOnlySpan<char> Value;
//
// Index property: points to the character that we are currently parsing.
//
internal int Index;
// The length of Value string.
internal int Length => Value.Length;
// The current character to be looked at.
internal char m_current;
private readonly CompareInfo m_info;
// Flag to indicate if we encouter an digit, we should check for token or not.
// In some cultures, such as mn-MN, it uses "\x0031\x00a0\x0434\x04af\x0433\x044d\x044d\x0440\x00a0\x0441\x0430\x0440" in month names.
private readonly bool m_checkDigitToken;
internal __DTString(ReadOnlySpan<char> str, DateTimeFormatInfo dtfi, bool checkDigitToken) : this(str, dtfi)
{
m_checkDigitToken = checkDigitToken;
}
internal __DTString(ReadOnlySpan<char> str, DateTimeFormatInfo dtfi)
{
Debug.Assert(dtfi != null, "Expected non-null DateTimeFormatInfo");
Index = -1;
Value = str;
m_current = '\0';
m_info = dtfi.CompareInfo;
m_checkDigitToken = ((dtfi.FormatFlags & DateTimeFormatFlags.UseDigitPrefixInTokens) != 0);
}
internal CompareInfo CompareInfo => m_info;
//
// Advance the Index.
// Return true if Index is NOT at the end of the string.
//
// Typical usage:
// while (str.GetNext())
// {
// char ch = str.GetChar()
// }
internal bool GetNext()
{
Index++;
if (Index < Length)
{
m_current = Value[Index];
return true;
}
return false;
}
internal bool AtEnd()
{
return Index < Length ? false : true;
}
internal bool Advance(int count)
{
Debug.Assert(Index + count <= Length, "__DTString::Advance: Index + count <= len");
Index += count;
if (Index < Length)
{
m_current = Value[Index];
return true;
}
return false;
}
// Used by DateTime.Parse() to get the next token.
internal void GetRegularToken(out TokenType tokenType, out int tokenValue, DateTimeFormatInfo dtfi)
{
tokenValue = 0;
if (Index >= Length)
{
tokenType = TokenType.EndOfString;
return;
}
Start:
if (char.IsAsciiDigit(m_current))
{
// This is a digit.
tokenValue = m_current - '0';
int value;
int start = Index;
//
// Collect other digits.
//
while (++Index < Length)
{
m_current = Value[Index];
value = m_current - '0';
if (value >= 0 && value <= 9)
{
tokenValue = tokenValue * 10 + value;
}
else
{
break;
}
}
if (Index - start > DateTimeParse.MaxDateTimeNumberDigits)
{
tokenType = TokenType.NumberToken;
tokenValue = -1;
}
else if (Index - start < 3)
{
tokenType = TokenType.NumberToken;
}
else
{
// If there are more than 3 digits, assume that it's a year value.
tokenType = TokenType.YearNumberToken;
}
if (m_checkDigitToken)
{
int save = Index;
char saveCh = m_current;
// Re-scan using the staring Index to see if this is a token.
Index = start; // To include the first digit.
m_current = Value[Index];
// This DTFI has tokens starting with digits.
// E.g. mn-MN has month name like "\x0031\x00a0\x0434\x04af\x0433\x044d\x044d\x0440\x00a0\x0441\x0430\x0440"
if (dtfi.Tokenize(TokenType.RegularTokenMask, out TokenType tempType, out int tempValue, ref this))
{
tokenType = tempType;
tokenValue = tempValue;
// This is a token, so the Index has been advanced properly in DTFI.Tokenizer().
}
else
{
// Use the number token value.
// Restore the index.
Index = save;
m_current = saveCh;
}
}
}
else if (char.IsWhiteSpace(m_current))
{
// Just skip to the next character.
while (++Index < Length)
{
m_current = Value[Index];
if (!char.IsWhiteSpace(m_current))
{
goto Start;
}
}
// We have reached the end of string.
tokenType = TokenType.EndOfString;
}
else
{
dtfi.Tokenize(TokenType.RegularTokenMask, out tokenType, out tokenValue, ref this);
}
}
internal TokenType GetSeparatorToken(DateTimeFormatInfo dtfi, out int indexBeforeSeparator, out char charBeforeSeparator)
{
indexBeforeSeparator = Index;
charBeforeSeparator = m_current;
TokenType tokenType;
if (!SkipWhiteSpaceAndRtlMarkCurrent())
{
// Reach the end of the string.
return TokenType.SEP_End;
}
if (!char.IsAsciiDigit(m_current))
{
// Not a digit. Tokenize it.
bool found = dtfi.Tokenize(TokenType.SeparatorTokenMask, out tokenType, out _, ref this);
if (!found)
{
tokenType = TokenType.SEP_Space;
}
}
else
{
// Do nothing here. If we see a number, it will not be a separator. There is no need wasting time trying to find the
// separator token.
tokenType = TokenType.SEP_Space;
}
return tokenType;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal bool MatchSpecifiedWord(string target) =>
Index + target.Length <= Length &&
m_info.Compare(Value.Slice(Index, target.Length), target, CompareOptions.IgnoreCase) == 0;
internal bool MatchSpecifiedWords(string target, bool checkWordBoundary, scoped ref int matchLength)
{
int valueRemaining = Value.Length - Index;
matchLength = target.Length;
if (matchLength > valueRemaining || m_info.Compare(Value.Slice(Index, matchLength), target, CompareOptions.IgnoreCase) != 0)
{
// Check word by word
int targetPosition = 0; // Where we are in the target string
int thisPosition = Index; // Where we are in this string
int wsIndex = target.AsSpan(targetPosition).IndexOfAny("\u0020\u00A0\u202F");
if (wsIndex < 0)
{
return false;
}
wsIndex += targetPosition;
while (true)
{
int segmentLength = wsIndex - targetPosition;
if (thisPosition >= Value.Length - segmentLength)
{ // Subtraction to prevent overflow.
return false;
}
if (segmentLength == 0)
{
// If segmentLength == 0, it means that we have leading space in the target string.
// In that case, skip the leading spaces in the target and this string.
matchLength--;
}
else
{
// Make sure we also have whitespace in the input string
if (!char.IsWhiteSpace(Value[thisPosition + segmentLength]))
{
return false;
}
if (m_info.CompareOptionIgnoreCase(Value.Slice(thisPosition, segmentLength), target.AsSpan(targetPosition, segmentLength)) != 0)
{
return false;
}
// Advance the input string
thisPosition = thisPosition + segmentLength + 1;
}
// Advance our target string
targetPosition = wsIndex + 1;
// Skip past multiple whitespace
while (thisPosition < Value.Length && char.IsWhiteSpace(Value[thisPosition]))
{
thisPosition++;
matchLength++;
}
wsIndex = target.AsSpan(targetPosition).IndexOfAny("\u0020\u00A0\u202F");
if (wsIndex < 0)
{
break;
}
wsIndex += targetPosition;
}
// now check the last segment;
if (targetPosition < target.Length)
{
int segmentLength = target.Length - targetPosition;
if (thisPosition > Value.Length - segmentLength)
{
return false;
}
if (m_info.CompareOptionIgnoreCase(Value.Slice(thisPosition, segmentLength), target.AsSpan(targetPosition, segmentLength)) != 0)
{
return false;
}
}
}
if (checkWordBoundary)
{
int nextCharIndex = Index + matchLength;
if (nextCharIndex < Value.Length)
{
if (char.IsLetter(Value[nextCharIndex]))
{
return false;
}
}
}
return true;
}
//
// Check to see if the string starting from Index is a prefix of
// str.
// If a match is found, true value is returned and Index is updated to the next character to be parsed.
// Otherwise, Index is unchanged.
//
internal bool Match(string str)
{
if (++Index < Length && Value.Slice(Index).StartsWith(str))
{
// Update the Index to the end of the matching string.
// So the following GetNext()/Match() operation will get
// the next character to be parsed.
Index += (str.Length - 1);
return true;
}
return false;
}
internal bool Match(char ch)
{
if (++Index >= Length)
{
return false;
}
if ((Value[Index] == ch) ||
(ch == ' ' && IsSpaceReplacingChar(Value[Index])))
{
m_current = ch;
return true;
}
Index--;
return false;
}
private static bool IsSpaceReplacingChar(char c) => c == '\u00a0' || c == '\u202f';
//
// Actions: From the current position, try matching the longest word in the specified string array.
// E.g. words[] = {"AB", "ABC", "ABCD"}, if the current position points to a substring like "ABC DEF",
// MatchLongestWords(words, ref MaxMatchStrLen) will return 1 (the index), and maxMatchLen will be 3.
// Returns:
// The index that contains the longest word to match
// Arguments:
// words The string array that contains words to search.
// maxMatchStrLen [in/out] the initialized maximum length. This parameter can be used to
// find the longest match in two string arrays.
//
internal int MatchLongestWords(string[] words, scoped ref int maxMatchStrLen)
{
int result = -1;
for (int i = 0; i < words.Length; i++)
{
string word = words[i];
int matchLength = word.Length;
if (MatchSpecifiedWords(word, false, ref matchLength))
{
if (matchLength > maxMatchStrLen)
{
maxMatchStrLen = matchLength;
result = i;
}
}
}
return result;
}
//
// Get the number of repeat character after the current character.
// For a string "hh:mm:ss" at Index of 3. GetRepeatCount() = 2, and Index
// will point to the second ':'.
//
internal int GetRepeatCount()
{
char repeatChar = Value[Index];
int pos = Index + 1;
while ((pos < Length) && (Value[pos] == repeatChar))
{
pos++;
}
int repeatCount = (pos - Index);
// Update the Index to the end of the repeated characters.
// So the following GetNext() operation will get
// the next character to be parsed.
Index = pos - 1;
return repeatCount;
}
// Return false when end of string is encountered or a non-digit character is found.
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal bool GetNextDigit() =>
++Index < Length &&
char.IsAsciiDigit(Value[Index]);
//
// Get the current character.
//
internal char GetChar()
{
Debug.Assert(Index >= 0 && Index < Length, "Index >= 0 && Index < len");
return Value[Index];
}
//
// Convert the current character to a digit, and return it.
//
internal int GetDigit()
{
Debug.Assert(Index >= 0 && Index < Length, "Index >= 0 && Index < len");
Debug.Assert(char.IsAsciiDigit(Value[Index]), "IsDigit(Value[Index])");
return Value[Index] - '0';
}
//
// Eat White Space ahead of the current position
//
// Return false if end of string is encountered.
//
internal void SkipWhiteSpaces()
{
// Look ahead to see if the next character
// is a whitespace.
while (Index + 1 < Length)
{
char ch = Value[Index + 1];
if (!char.IsWhiteSpace(ch))
{
return;
}
Index++;
}
return;
}
//
// Skip white spaces and right-to-left Mark from the current position
//
// U+200F is the Unicode right-to-left mark. In some Bidi cultures, this mark gets inserted inside the formatted date or time to have the output displayed in the correct layout.
// This mark does not affect the date or the time component values. Ignoring this mark during parsing wouldn't affect the result but will avoid having the parsing fail.
// Return false if end of string is encountered.
//
internal bool SkipWhiteSpaceAndRtlMarkCurrent()
{
if (Index >= Length)
{
return false;
}
if (!char.IsWhiteSpace(m_current) && m_current != RightToLeftMark)
{
return true;
}
while (++Index < Length)
{
m_current = Value[Index];
if (!char.IsWhiteSpace(m_current) && m_current != RightToLeftMark)
{
return true;
}
// Nothing here.
}
return false;
}
internal void TrimTail()
{
int i = Length - 1;
while (i >= 0 && char.IsWhiteSpace(Value[i]))
{
i--;
}
Value = Value.Slice(0, i + 1);
}
// Trim the trailing spaces within a quoted string.
// Call this after TrimTail() is done.
internal void RemoveTrailingInQuoteSpaces()
{
int i = Length - 1;
if (i <= 1)
{
return;
}
char ch = Value[i];
// Check if the last character is a quote.
if (ch == '\'' || ch == '\"')
{
if (char.IsWhiteSpace(Value[i - 1]))
{
i--;
while (i >= 1 && char.IsWhiteSpace(Value[i - 1]))
{
i--;
}
Span<char> result = new char[i + 1];
result[i] = ch;
Value.Slice(0, i).CopyTo(result);
Value = result;
}
}
}
// Trim the leading spaces within a quoted string.
// Call this after the leading spaces before quoted string are trimmed.
internal void RemoveLeadingInQuoteSpaces()
{
if (Length <= 2)
{
return;
}
int i = 0;
char ch = Value[i];
// Check if the last character is a quote.
if (ch == '\'' || ch == '\"')
{
while ((i + 1) < Length && char.IsWhiteSpace(Value[i + 1]))
{
i++;
}
if (i != 0)
{
Span<char> result = new char[Value.Length - i];
result[0] = ch;
Value.Slice(i + 1).CopyTo(result.Slice(1));
Value = result;
}
}
}
internal DTSubString GetSubString()
{
DTSubString sub = default;
sub.index = Index;
sub.s = Value;
while (Index + sub.length < Length)
{
DTSubStringType currentType;
char ch = Value[Index + sub.length];
currentType = char.IsAsciiDigit(ch) ? DTSubStringType.Number : DTSubStringType.Other;
if (sub.length == 0)
{
sub.type = currentType;
}
else if (sub.type != currentType)
{
break;
}
sub.length++;
if (currentType == DTSubStringType.Number)
{
// Incorporate the number into the value
// Limit the digits to prevent overflow
if (sub.length > DateTimeParse.MaxDateTimeNumberDigits)
{
sub.type = DTSubStringType.Invalid;
return sub;
}
int number = ch - '0';
Debug.Assert(number >= 0 && number <= 9);
sub.value = sub.value * 10 + number;
}
else
{
// For non numbers, just return this length 1 token. This should be expanded
// to more types of thing if this parsing approach is used for things other
// than numbers and single characters
break;
}
}
if (sub.length == 0)
{
sub.type = DTSubStringType.End;
return sub;
}
return sub;
}
internal void ConsumeSubString(DTSubString sub)
{
Debug.Assert(sub.index == Index);
Debug.Assert(sub.index + sub.length <= Length, "sub.index + sub.length <= len");
Index = sub.index + sub.length;
if (Index < Length)
{
m_current = Value[Index];
}
}
}
internal enum DTSubStringType
{
Unknown = 0,
Invalid = 1,
Number = 2,
End = 3,
Other = 4,
}
internal ref struct DTSubString
{
internal ReadOnlySpan<char> s;
internal int index;
internal int length;
internal DTSubStringType type;
internal int value;
internal char this[int relativeIndex] => s[index + relativeIndex];
}
//
// The buffer to store the parsing token.
//
internal
struct DateTimeToken
{
internal DateTimeParse.DTT dtt; // Store the token
internal TokenType suffix; // Store the CJK Year/Month/Day suffix (if any)
internal int num; // Store the number that we are parsing (if any)
}
//
// The buffer to store temporary parsing information.
//
internal unsafe struct DateTimeRawInfo
{
private int* num;
internal int numCount;
internal int month;
internal int year;
internal int dayOfWeek;
internal int era;
internal DateTimeParse.TM timeMark;
internal double fraction;
internal bool hasSameDateAndTimeSeparators;
internal void Init(int* numberBuffer)
{
month = -1;
year = -1;
dayOfWeek = -1;
era = -1;
timeMark = DateTimeParse.TM.NotSet;
fraction = -1;
num = numberBuffer;
}
internal void AddNumber(int value)
{
num[numCount++] = value;
}
internal int GetNumber(int index)
{
return num[index];
}
}
internal enum ParseFailureKind
{
None,
ArgumentNull_String,
Format_BadDatePattern,
Format_BadDateTime,
Format_BadDateTimeCalendar,
Format_BadDayOfWeek,
Format_BadFormatSpecifier,
Format_BadQuote,
Format_DateOutOfRange,
Format_MissingIncompleteDate,
Format_NoFormatSpecifier,
Format_OffsetOutOfRange,
Format_RepeatDateTimePattern,
Format_UnknownDateTimeWord,
Format_UTCOutOfRange,
Argument_InvalidDateStyles,
Argument_BadFormatSpecifier,
Format_BadDateOnly,
Format_BadTimeOnly,
Format_DateTimeOnlyContainsNoneDateParts, // DateOnly and TimeOnly specific value. Unrelated date parts when parsing DateOnly or Unrelated time parts when parsing TimeOnly
}
[Flags]
internal enum ParseFlags
{
HaveYear = 0x00000001,
HaveMonth = 0x00000002,
HaveDay = 0x00000004,
HaveHour = 0x00000008,
HaveMinute = 0x00000010,
HaveSecond = 0x00000020,
HaveTime = 0x00000040,
HaveDate = 0x00000080,
TimeZoneUsed = 0x00000100,
TimeZoneUtc = 0x00000200,
ParsedMonthName = 0x00000400,
CaptureOffset = 0x00000800,
YearDefault = 0x00001000,
Rfc1123Pattern = 0x00002000,
UtcSortPattern = 0x00004000,
}
//
// This will store the result of the parsing. And it will be eventually
// used to construct a DateTime instance.
//
internal ref struct DateTimeResult
{
internal int Year;
internal int Month;
internal int Day;
//
// Set time default to 00:00:00.
//
internal int Hour;
internal int Minute;
internal int Second;
internal double fraction;
internal int era;
internal ParseFlags flags;
internal TimeSpan timeZoneOffset;
internal Calendar calendar;
internal DateTime parsedDate;
internal ParseFailureKind failure;
internal ReadOnlySpan<char> failureSpanArgument; // initially the original date time string, but may be overwritten
internal int failureIntArgument;
internal void Init(ReadOnlySpan<char> originalDateTimeString)
{
this.failureSpanArgument = originalDateTimeString;
Year = -1;
Month = -1;
Day = -1;
fraction = -1;
era = -1;
}
internal void SetDate(int year, int month, int day)
{
Year = year;
Month = month;
Day = day;
}
internal void SetBadFormatSpecifierFailure()
{
SetBadFormatSpecifierFailure(ReadOnlySpan<char>.Empty);
}
internal void SetBadFormatSpecifierFailure(ReadOnlySpan<char> failedFormatSpecifier)
{
this.failure = ParseFailureKind.Format_BadFormatSpecifier;
this.failureSpanArgument = failedFormatSpecifier;
}
internal void SetBadDateTimeFailure()
{
this.failure = ParseFailureKind.Format_BadDateTime;
}
internal void SetFailure(ParseFailureKind failure)
{
this.failure = failure;
}
internal void SetFailure(ParseFailureKind failure, string failureStringArgument)
{
this.failure = failure;
this.failureSpanArgument = failureStringArgument;
}
internal void SetFailure(ParseFailureKind failure, int failureIntArgument)
{
this.failure = failure;
this.failureIntArgument = failureIntArgument;
}
}
// This is the helper data structure used in ParseExact().
internal struct ParsingInfo
{
internal Calendar calendar;
internal int dayOfWeek;
internal DateTimeParse.TM timeMark;
internal bool fUseHour12;
internal bool fUseTwoDigitYear;
internal bool fAllowInnerWhite;
internal bool fAllowTrailingWhite;
internal bool fUseHebrewNumberParser;
public ParsingInfo(Calendar calendar)
{
this.calendar = calendar;
dayOfWeek = -1;
timeMark = DateTimeParse.TM.NotSet;
}
}
//
// The type of token that will be returned by DateTimeFormatInfo.Tokenize().
//
internal enum TokenType
{
// The valid token should start from 1.
// Regular tokens. The range is from 0x00 ~ 0xff.
NumberToken = 1, // The number. E.g. "12"
YearNumberToken = 2, // The number which is considered as year number, which has 3 or more digits. E.g. "2003"
Am = 3, // AM timemark. E.g. "AM"
Pm = 4, // PM timemark. E.g. "PM"
MonthToken = 5, // A word (or words) that represents a month name. E.g. "March"
EndOfString = 6, // End of string
DayOfWeekToken = 7, // A word (or words) that represents a day of week name. E.g. "Monday" or "Mon"
TimeZoneToken = 8, // A word that represents a timezone name. E.g. "GMT"
EraToken = 9, // A word that represents a era name. E.g. "A.D."
DateWordToken = 10, // A word that can appear in a DateTime string, but serves no parsing semantics. E.g. "de" in Spanish culture.
UnknownToken = 11, // An unknown word, which signals an error in parsing.
HebrewNumber = 12, // A number that is composed of Hebrew text. Hebrew calendar uses Hebrew digits for year values, month values, and day values.
JapaneseEraToken = 13, // Era name for JapaneseCalendar
TEraToken = 14, // Era name for TaiwanCalendar
IgnorableSymbol = 15, // A separator like "," that is equivalent to whitespace
// Separator tokens.
SEP_Unk = 0x100, // Unknown separator.
SEP_End = 0x200, // The end of the parsing string.
SEP_Space = 0x300, // Whitespace (including comma).
SEP_Am = 0x400, // AM timemark. E.g. "AM"
SEP_Pm = 0x500, // PM timemark. E.g. "PM"
SEP_Date = 0x600, // date separator. E.g. "/"
SEP_Time = 0x700, // time separator. E.g. ":"
SEP_YearSuff = 0x800, // Chinese/Japanese/Korean year suffix.
SEP_MonthSuff = 0x900, // Chinese/Japanese/Korean month suffix.
SEP_DaySuff = 0xa00, // Chinese/Japanese/Korean day suffix.
SEP_HourSuff = 0xb00, // Chinese/Japanese/Korean hour suffix.
SEP_MinuteSuff = 0xc00, // Chinese/Japanese/Korean minute suffix.
SEP_SecondSuff = 0xd00, // Chinese/Japanese/Korean second suffix.
SEP_LocalTimeMark = 0xe00, // 'T', used in ISO 8601 format.
SEP_DateOrOffset = 0xf00, // '-' which could be a date separator or start of a time zone offset
RegularTokenMask = 0x00ff,
SeparatorTokenMask = 0xff00,
}
}
|