File: System\Numerics\Tensors\netcore\TensorPrimitives.MinMagnitudeNumber.cs
Web Access
Project: src\src\libraries\System.Numerics.Tensors\src\System.Numerics.Tensors.csproj (System.Numerics.Tensors)
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
 
using System.Diagnostics;
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics;
 
namespace System.Numerics.Tensors
{
    public static partial class TensorPrimitives
    {
        /// <summary>Searches for the number with the smallest magnitude in the specified tensor.</summary>
        /// <param name="x">The tensor, represented as a span.</param>
        /// <returns>The element in <paramref name="x"/> with the smallest magnitude (absolute value).</returns>
        /// <exception cref="ArgumentException">Length of <paramref name="x" /> must be greater than zero.</exception>
        /// <remarks>
        /// <para>
        /// The determination of the minimum magnitude matches the IEEE 754:2019 `minimumMagnitudeNumber` function.
        /// If two values have the same magnitude and one is positive and the other is negative,
        /// the negative value is considered to have the smaller magnitude.
        /// </para>
        /// <para>
        /// This method may call into the underlying C runtime or employ instructions specific to the current architecture. Exact results may differ between different
        /// operating systems or architectures.
        /// </para>
        /// </remarks>
        public static T MinMagnitudeNumber<T>(ReadOnlySpan<T> x)
            where T : INumberBase<T> =>
            MinMaxCore<T, MinMagnitudeNumberOperator<T>>(x);
 
        /// <summary>Computes the element-wise number with the smallest magnitude in the specified tensors.</summary>
        /// <param name="x">The first tensor, represented as a span.</param>
        /// <param name="y">The second tensor, represented as a span.</param>
        /// <param name="destination">The destination tensor, represented as a span.</param>
        /// <exception cref="ArgumentException">Length of <paramref name="x" /> must be same as length of <paramref name="y" />.</exception>
        /// <exception cref="ArgumentException">Destination is too short.</exception>
        /// <exception cref="ArgumentException"><paramref name="x"/> and <paramref name="destination"/> reference overlapping memory locations and do not begin at the same location.</exception>
        /// <exception cref="ArgumentException"><paramref name="y"/> and <paramref name="destination"/> reference overlapping memory locations and do not begin at the same location.</exception>
        /// <remarks>
        /// <para>
        /// This method effectively computes <c><paramref name="destination" />[i] = <typeparamref name="T"/>.MinMagnitudeNumber(<paramref name="x" />[i], <paramref name="y" />[i])</c>.
        /// </para>
        /// <para>
        /// The determination of the maximum magnitude matches the IEEE 754:2019 `minimumMagnitudeNumber` function.
        /// If the two values have the same magnitude and one is positive and the other is negative,
        /// the negative value is considered to have the smaller magnitude.
        /// </para>
        /// <para>
        /// This method may call into the underlying C runtime or employ instructions specific to the current architecture. Exact results may differ between different
        /// operating systems or architectures.
        /// </para>
        /// </remarks>
        public static void MinMagnitudeNumber<T>(ReadOnlySpan<T> x, ReadOnlySpan<T> y, Span<T> destination)
            where T : INumberBase<T> =>
            InvokeSpanSpanIntoSpan<T, MinMagnitudeNumberOperator<T>>(x, y, destination);
 
        /// <summary>Computes the element-wise number with the smallest magnitude in the specified tensors.</summary>
        /// <param name="x">The first tensor, represented as a span.</param>
        /// <param name="y">The second tensor, represented as a scalar.</param>
        /// <param name="destination">The destination tensor, represented as a span.</param>
        /// <exception cref="ArgumentException">Destination is too short.</exception>
        /// <exception cref="ArgumentException"><paramref name="x"/> and <paramref name="destination"/> reference overlapping memory locations and do not begin at the same location.</exception>
        /// <remarks>
        /// <para>
        /// This method effectively computes <c><paramref name="destination" />[i] = <typeparamref name="T"/>.MinMagnitudeNumber(<paramref name="x" />[i], <paramref name="y" />)</c>.
        /// </para>
        /// <para>
        /// The determination of the maximum magnitude matches the IEEE 754:2019 `minimumMagnitudeNumber` function.
        /// If the two values have the same magnitude and one is positive and the other is negative,
        /// the negative value is considered to have the smaller magnitude.
        /// </para>
        /// <para>
        /// This method may call into the underlying C runtime or employ instructions specific to the current architecture. Exact results may differ between different
        /// operating systems or architectures.
        /// </para>
        /// </remarks>
        public static void MinMagnitudeNumber<T>(ReadOnlySpan<T> x, T y, Span<T> destination)
            where T : INumberBase<T> =>
            InvokeSpanScalarIntoSpan<T, MinMagnitudeNumberOperator<T>>(x, y, destination);
 
        /// <summary>Operator to get x or y based on which has the smaller MathF.Abs</summary>
        internal readonly struct MinMagnitudeNumberOperator<T> : IAggregationOperator<T>
            where T : INumberBase<T>
        {
            public static bool Vectorizable => true;
 
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public static T Invoke(T x, T y) => T.MinMagnitudeNumber(x, y);
 
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public static Vector128<T> Invoke(Vector128<T> x, Vector128<T> y)
            {
#if NET9_0_OR_GREATER
                return Vector128.MinMagnitudeNumber(x, y);
#else
                if ((typeof(T) == typeof(byte))
                 || (typeof(T) == typeof(ushort))
                 || (typeof(T) == typeof(uint))
                 || (typeof(T) == typeof(ulong))
                 || (typeof(T) == typeof(nuint)))
                {
                    return Vector128.Min(x, y);
                }
 
                Vector128<T> xMag = Vector128.Abs(x);
                Vector128<T> yMag = Vector128.Abs(y);
 
                if ((typeof(T) == typeof(float)) || (typeof(T) == typeof(double)))
                {
                    return Vector128.ConditionalSelect(
                        Vector128.LessThan(xMag, yMag) | IsNaN(yMag) | (Vector128.Equals(xMag, yMag) & IsNegative(x)),
                        x,
                        y
                    );
                }
 
                Debug.Assert((typeof(T) == typeof(sbyte))
                          || (typeof(T) == typeof(short))
                          || (typeof(T) == typeof(int))
                          || (typeof(T) == typeof(long))
                          || (typeof(T) == typeof(nint)));
 
                return Vector128.ConditionalSelect(
                    (Vector128.LessThan(xMag, yMag) & IsPositive(xMag)) | (Vector128.Equals(xMag, yMag) & IsNegative(x)) | IsNegative(yMag),
                    x,
                    y
                );
#endif
            }
 
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public static Vector256<T> Invoke(Vector256<T> x, Vector256<T> y)
            {
#if NET9_0_OR_GREATER
                return Vector256.MinMagnitudeNumber(x, y);
#else
                if ((typeof(T) == typeof(byte))
                 || (typeof(T) == typeof(ushort))
                 || (typeof(T) == typeof(uint))
                 || (typeof(T) == typeof(ulong))
                 || (typeof(T) == typeof(nuint)))
                {
                    return Vector256.Min(x, y);
                }
 
                Vector256<T> xMag = Vector256.Abs(x);
                Vector256<T> yMag = Vector256.Abs(y);
 
                if ((typeof(T) == typeof(float)) || (typeof(T) == typeof(double)))
                {
                    return Vector256.ConditionalSelect(
                        Vector256.LessThan(xMag, yMag) | IsNaN(yMag) | (Vector256.Equals(xMag, yMag) & IsNegative(x)),
                        x,
                        y
                    );
                }
 
                Debug.Assert((typeof(T) == typeof(sbyte))
                          || (typeof(T) == typeof(short))
                          || (typeof(T) == typeof(int))
                          || (typeof(T) == typeof(long))
                          || (typeof(T) == typeof(nint)));
 
                return Vector256.ConditionalSelect(
                    (Vector256.LessThan(xMag, yMag) & IsPositive(xMag)) | (Vector256.Equals(xMag, yMag) & IsNegative(x)) | IsNegative(yMag),
                    x,
                    y
                );
#endif
            }
 
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public static Vector512<T> Invoke(Vector512<T> x, Vector512<T> y)
            {
#if NET9_0_OR_GREATER
                return Vector512.MinMagnitudeNumber(x, y);
#else
                if ((typeof(T) == typeof(byte))
                 || (typeof(T) == typeof(ushort))
                 || (typeof(T) == typeof(uint))
                 || (typeof(T) == typeof(ulong))
                 || (typeof(T) == typeof(nuint)))
                {
                    return Vector512.Min(x, y);
                }
 
                Vector512<T> xMag = Vector512.Abs(x);
                Vector512<T> yMag = Vector512.Abs(y);
 
                if ((typeof(T) == typeof(float)) || (typeof(T) == typeof(double)))
                {
                    return Vector512.ConditionalSelect(
                        Vector512.LessThan(xMag, yMag) | IsNaN(yMag) | (Vector512.Equals(xMag, yMag) & IsNegative(x)),
                        x,
                        y
                    );
                }
 
                Debug.Assert((typeof(T) == typeof(sbyte))
                          || (typeof(T) == typeof(short))
                          || (typeof(T) == typeof(int))
                          || (typeof(T) == typeof(long))
                          || (typeof(T) == typeof(nint)));
 
                return Vector512.ConditionalSelect(
                    (Vector512.LessThan(xMag, yMag) & IsPositive(xMag)) | (Vector512.Equals(xMag, yMag) & IsNegative(x)) | IsNegative(yMag),
                    x,
                    y
                );
#endif
            }
 
            public static T Invoke(Vector128<T> x) => HorizontalAggregate<T, MinMagnitudeNumberOperator<T>>(x);
            public static T Invoke(Vector256<T> x) => HorizontalAggregate<T, MinMagnitudeNumberOperator<T>>(x);
            public static T Invoke(Vector512<T> x) => HorizontalAggregate<T, MinMagnitudeNumberOperator<T>>(x);
        }
    }
}