|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics;
namespace System.Numerics.Tensors
{
public static partial class TensorPrimitives
{
/// <summary>Computes the element-wise absolute value of each number in the specified tensor.</summary>
/// <param name="x">The tensor, represented as a span.</param>
/// <param name="destination">The destination tensor, represented as a span.</param>
/// <exception cref="ArgumentException">Destination is too short.</exception>
/// <exception cref="ArgumentException"><paramref name="x"/> and <paramref name="destination"/> reference overlapping memory locations and do not begin at the same location.</exception>
/// <exception cref="OverflowException"><typeparamref name="T"/> is a signed integer type and <paramref name="x"/> contained a value equal to <typeparamref name="T"/>'s minimum value.</exception>
/// <remarks>
/// <para>
/// This method effectively computes <c><paramref name="destination" />[i] = <typeparamref name="T"/>.Abs(<paramref name="x" />[i])</c>.
/// </para>
/// <para>
/// The absolute value of a <typeparamref name="T"/> is its numeric value without its sign. For example, the absolute value of both 1.2e-03 and -1.2e03 is 1.2e03.
/// </para>
/// <para>
/// If a value is equal to <see cref="IFloatingPointIeee754{TSelf}.NegativeInfinity"/> or <see cref="IFloatingPointIeee754{TSelf}.PositiveInfinity"/>, the result stored into the corresponding destination location is set to <see cref="IFloatingPointIeee754{TSelf}.PositiveInfinity"/>.
/// If a value is equal to <see cref="IFloatingPointIeee754{TSelf}.NaN"/>, the result stored into the corresponding destination location is the original NaN value with the sign bit removed.
/// </para>
/// </remarks>
public static void Abs<T>(ReadOnlySpan<T> x, Span<T> destination)
where T : INumberBase<T> =>
InvokeSpanIntoSpan<T, AbsoluteOperator<T>>(x, destination);
/// <summary>T.Abs(x)</summary>
internal readonly struct AbsoluteOperator<T> : IUnaryOperator<T, T> where T : INumberBase<T>
{
public static bool Vectorizable => true;
public static T Invoke(T x) => T.Abs(x);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector128<T> Invoke(Vector128<T> x)
{
if (typeof(T) == typeof(sbyte) ||
typeof(T) == typeof(short) ||
typeof(T) == typeof(int) ||
typeof(T) == typeof(long) ||
typeof(T) == typeof(nint))
{
// Handle signed integers specially, in order to throw if any attempt is made to
// take the absolute value of the minimum value of the type, which doesn't have
// a positive absolute value representation.
Vector128<T> abs = Vector128.ConditionalSelect(Vector128.LessThan(x, Vector128<T>.Zero), -x, x);
if (Vector128.LessThan(abs, Vector128<T>.Zero) != Vector128<T>.Zero)
{
ThrowNegateTwosCompOverflow();
}
}
return Vector128.Abs(x);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector256<T> Invoke(Vector256<T> x)
{
if (typeof(T) == typeof(sbyte) ||
typeof(T) == typeof(short) ||
typeof(T) == typeof(int) ||
typeof(T) == typeof(long) ||
typeof(T) == typeof(nint))
{
// Handle signed integers specially, in order to throw if any attempt is made to
// take the absolute value of the minimum value of the type, which doesn't have
// a positive absolute value representation.
Vector256<T> abs = Vector256.ConditionalSelect(Vector256.LessThan(x, Vector256<T>.Zero), -x, x);
if (Vector256.LessThan(abs, Vector256<T>.Zero) != Vector256<T>.Zero)
{
ThrowNegateTwosCompOverflow();
}
}
return Vector256.Abs(x);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector512<T> Invoke(Vector512<T> x)
{
if (typeof(T) == typeof(sbyte) ||
typeof(T) == typeof(short) ||
typeof(T) == typeof(int) ||
typeof(T) == typeof(long) ||
typeof(T) == typeof(nint))
{
// Handle signed integers specially, in order to throw if any attempt is made to
// take the absolute value of the minimum value of the type, which doesn't have
// a positive absolute value representation.
Vector512<T> abs = Vector512.ConditionalSelect(Vector512.LessThan(x, Vector512<T>.Zero), -x, x);
if (Vector512.LessThan(abs, Vector512<T>.Zero) != Vector512<T>.Zero)
{
ThrowNegateTwosCompOverflow();
}
}
return Vector512.Abs(x);
}
}
}
}
|