2 types derived from LinearModelParameters
Microsoft.ML.StandardTrainers (2)
44 references to LinearModelParameters
Microsoft.ML.Mkl.Components (4)
Microsoft.ML.StandardTrainers (39)
Standard\Online\OnlineLinear.cs (6)
83/// this, and return the instance via <see cref="MakeState(IChannel, int, LinearModelParameters)"/>.
123protected TrainStateBase(IChannel ch, int numFeatures, LinearModelParameters predictor, OnlineLinearTrainer<TTransformer, TModel> parent)
279if (initPredictor is LinearModelParameters initLinearPred)
280initLinearPred = (LinearModelParameters)initPredictor;
308public TTransformer Fit(IDataView trainData, LinearModelParameters modelParameters)
351private protected abstract TrainStateBase MakeState(IChannel ch, int numFeatures, LinearModelParameters predictor);
Standard\SdcaBinary.cs (10)
76var linInitPred = (initPred as IWeaklyTypedCalibratedModelParameters)?.WeaklyTypedSubModel as LinearModelParameters;
77linInitPred = linInitPred ?? initPred as LinearModelParameters;
84private protected abstract TModel TrainCore(IChannel ch, RoleMappedData data, LinearModelParameters predictor, int weightSetCount);
322private protected sealed override TModel TrainCore(IChannel ch, RoleMappedData data, LinearModelParameters predictor, int weightSetCount)
2013public BinaryPredictionTransformer<TModel> Fit(IDataView trainData, LinearModelParameters modelParameters)
2019private protected override TModel TrainCore(IChannel ch, RoleMappedData data, LinearModelParameters predictor, int weightSetCount)
2205/// It's used at the end of <see cref="TrainCore(IChannel, RoleMappedData, LinearModelParameters, int)"/> to finalize the trained model.
2310/// Given weights and bias trained in <see cref="SgdBinaryTrainerBase{TModelParameters}.TrainCore(IChannel, RoleMappedData, LinearModelParameters, int)"/>,
2437/// a calibrator would be added after <see cref="SgdBinaryTrainerBase{TModelParameters}.TrainCore(IChannel, RoleMappedData, LinearModelParameters, int)"/>
Microsoft.ML.TestFramework (1)